Investigation and Analysis on Transverse Crack Spacing Distribution in Continuously Reinforced Concrete Pavement in China

2013 ◽  
Vol 690-693 ◽  
pp. 1817-1820
Author(s):  
Quan Man Zhao ◽  
Hong Liang Zhang ◽  
Yan Hui Wang

The longterm field investigations in the US showed that punchouts were the most important distress in continuously reinforced concrete pavement (CRCP) and often developed in the cluster cracking with the crack spacing of 0.3m-0.6m. But, it was not sure whether punchouts were the most important distress in CRCP in China, so this paper carried out field investigations on several CRC pavements in China. Results showed that punchouts were the most serious distress and often occurred in cluster crack regions. Furthermore, this paper analyzed the transverse crack spacing distribution. Results showed that the transverse cracks spacing distribution followed Weibull’s distribution.

Author(s):  
Yating Zhang ◽  
Jeffery Roesler

Falling weight deflectometer (FWD) testing is effective in evaluating the structural response of in-situ concrete pavements through the backcalculated pavement layer parameters. Specifically, the FWD data can be used to backcalculate the foundation layer and concrete stiffness or the soil layer stiffness, effective slab thickness, and slab–base interface condition. Since continuously reinforced concrete pavement (CRCP) has closely spaced transverse cracks, the traditional backcalculation assumption of an infinite slab can lead to significant errors in the backcalculated results. In this paper, solutions for backcalculated modulus of subgrade reaction ( k-value), elastic modulus of concrete ( E), and effective thickness ( heff) for different crack spacing have been derived from 2-D finite element analysis. AASHTO sensor configuration (0, 12, 24, 36 in.) was recommended for CRCP with crack spacing ≥6 ft, and an alternative solution for crack spacing of 4 and 5 ft was proposed with AREA24. Crack load transfer efficiency (LTE) across transverse cracks had limited impact on backcalculated results if the LTE was >80%. As expected, the backcalulation values were sensitive to the load plate’s longitudinal position relative to the transverse crack especially for crack spacings smaller than 8 ft. The proposed backcalculation method was applied to a field CRCP test section with different crack spacing, reinforcement ratio, and base types.


2016 ◽  
Vol 43 (1) ◽  
pp. 28-39 ◽  
Author(s):  
Pangil Choi ◽  
Dong-Ho Kim ◽  
Bong-Hak Lee ◽  
Moon C. Won

The objective of this study is to suggest reasonable structural evaluation method of continuously reinforced concrete pavement (CRCP) using falling weight deflectometer (FWD). The effects of transverse crack spacing and temperature conditions were investigated in CRCP sections with various slab thicknesses and pavement ages. A total of 20 CRCP sections were selected throughout Texas and structural responses were evaluated from 2006 to 2013 for 8 testing years. Test results show that transverse crack spacing has little effect on deflection and load transfer efficiency (LTE). The LTE values were maintained at above 90%, regardless of crack spacing, temperature condition or pavement age. Temperature variations had small effects on deflections at cracks and the mid-slab, but almost no effects on LTE. Maximum deflections and back-calculated k-values appear to be better indicators of structural condition of CRCP than LTE. Load transfer efficiency is not the best indicator of structural condition of transverse cracks in CRCP. Deficiencies in slab support are the primary cause of full-depth distresses in Texas, and back-calculated k-values, which combine both a maximum deflection and the shape of deflection bowl from FWD testing, may be a better indicator of the structural condition of CRCP.


Author(s):  
Yoon-Ho Cho ◽  
Terry Dossey ◽  
B. Frank Mccullough

The effect of coarse aggregate on pavement performance has been attributed to the volume of aggregate used in pavement construction. The different patterns of crack development for limestone (LS) and siliceous river gravel (SRG) are a typical example of aggregate-induced variable performance in continuously reinforced concrete pavement (CRCP). An attempt was made to find a reasonable solution for pavements with SRG. As a way to solve the performance problem observed from the SRG pavement, a blended aggregates mixture was suggested. Laboratory and field tests were performed to check the feasibility of their application in pavements. From the laboratory test, a 50:50 blending ratio was suggested after considering the effect on tensile strength and thermal coefficient of expansion. Field test sections were also constructed to verify previous performance observations for the two aggregates and to provide performance data for new variables such as blended aggregates and special curing methods. Unexpectedly, the blended mixture did not improve the performance of SRG pavement; rather it experienced worse cracking than SRG alone. A controlled experiment with additional field test sections is needed to verify or disprove this finding. The only definitive finding was that selection of aggregate in the concrete pavement is a vital consideration for the design of the pavement. The CRCP8 analytical program reasonably predicted crack spacing for both SRG and LS pavements, predicting mean crack spacing of 0.99 m (3.25 ft) for SRG and 1.98 m (6.41 ft) for the limestone. These values are somewhat below the actual spacing observed at 100 days. Data collected after the first winter period will be required to calibrate the program.


2020 ◽  
Vol 10 (21) ◽  
pp. 7458
Author(s):  
Yating Zhang ◽  
Zhiyi Huang

Continuously reinforced concrete pavement (CRCP) is a pavement structure with a high performance and long service life. However, the corrosion of the longitudinal steel can result in a poor bond relationship between the steel and the concrete, affecting the load transfer efficiency between the adjacent panels and being responsible for the development of CRCP distresses. Basalt fiber-reinforced polymer (BFRP) is corrosion-resistant and has the potential to be used in CRCP. In this paper, the layout of a CRCP test section with BFRP bars constructed on G330 National Road in Zhejiang Province, China, is presented. An analytical model is proposed to predict the crack behavior of CRCP with BFRP reinforcement, with the predicted results are compared to field-measured ones. A sensitivity analysis of the BFRP design parameters on the crack spacing and crack width is conducted as well. The results show that the mean values for field-measured crack spacing and crack width are 4.85 m and 1.30 mm, respectively, which are higher than the results for traditional CRCP with steel due to the lower elastic modulus of BFRP. The analytical predictions agree reasonably well with the crack survey results. The higher the elastic modulus of BFRP, the reinforcement content (with both BFRP spacing and diameter related), and the bond stiffness coefficient between the BFRP and concrete, the less the crack spacing and crack width will be. Given the same or similar reinforcement content, a lower diameter with a smaller spacing is recommended because of its contribution to a smaller crack spacing and width.


Author(s):  
Sachindra Dahal ◽  
Jeffery Raphael Roesler

Transverse cracking in continuously reinforced concrete pavement (CRCP) develops over time and may exhibit irregular patterns such as cluster cracks, Y-shaped cracks, and divided cracks. These undesirable cracking patterns can increase the probability of premature spalling and punchouts. Ideally, a uniform transverse cracking pattern with small crack widths leads to favorable long-term performance in CRCP. An experimental field project was constructed with internally cured concrete and active cracking to control crack initiation timing, patterns, and properties. Prewetted fine lightweight aggregate was used for internal curing, and edge notches of 2 in. depth and 2 ft length every 4 ft along the test section were sawcut for active crack control. The three experimental CRCP sections in Illinois were monitored for crack spacing, crack width, and formation of undesirable cracks over a 4-year period. Internally cured concrete significantly reduced the undesirable crack patterns relative to the control section. Internally cured concrete coupled with active crack concrete produced superior crack patterns and properties, that is, uniform crack spacing of 3.6 ft without cluster cracks, 0.2 mm surface crack width, and only a small number of undesirable cracks. Active crack control produced a higher number of transverse cracks near the terminal joint (last 150 ft) compared with the control section. Moisture and temperature management with active crack control during construction of the CRCP provided a desirable crack pattern and properties that should increase the overall service life of a pavement.


1996 ◽  
Vol 1 ◽  
pp. 73-80
Author(s):  
Tatsuo NISHIZAWA ◽  
Shigeru SHIMENO ◽  
Akinori KOMATSUBARA ◽  
Masashi KOYANAGAWA

Author(s):  
Lucio Salles de Salles ◽  
Lev Khazanovich ◽  
José Tadeu Balbo

Transverse crack pattern significantly affects performance of continuously reinforced concrete pavement (CRCP). However, field and modeled crack spacing are based on visual surveys of fully developed transverse cracks visible on the slab surface. Because of the difficulties in detecting incipient cracks in concrete slabs, the effect that such cracks may have on CRCP performance is not currently considered. To address this issue, this paper presents a non-destructive evaluation methodology based on an ultrasonic linear-array system for detection of incipient cracks in CRCP slabs. Two ultrasonic signal-processing techniques were used. First, the Hilbert Transform Indicator was used to identify the presence of damage in the concrete slab indicating potential crack locations. Then ultrasonic image reconstructions of these locations were used to further evaluate crack presence. The methodology was applied to four sections of an experimental short CRCP composed of 50-m long slabs – short in comparison to traditional CRCP. The locations of 58 potential incipient cracks were identified updating the short CRCP crack spacing; 10 of these incipient cracks were confirmed as surface-visible cracks in later visual surveys. Additionally, the methodology shows potential to detect undesired crack patterns such as cluster and Y-cracking before the cracks emerge on the slab surface.


2021 ◽  
Author(s):  
Muhammad Kashif ◽  
Amelie Outtier ◽  
Muhammad Wisal Khattak ◽  
Pieter De Winne ◽  
Hans De Backer

<p>The objective of this study is to evaluate the horizontal cracking potential in terms of vertical tensile stress development near longitudinal steel bar in the continuously reinforced concrete pavement (CRCP). For this purpose, a three-dimensional (3D) finite element (FE) model of the CRCP segment with partial surface saw-cuts has been developed using the FE tool Diana 10.3. The early-age behaviour of CRCP subjected to external varying temperature field condition has been evaluated by using the staggered structural-flow analysis. The characteristics of the early-age crack pattern in terms of crack initiation and crack propagation obtained from the FE model are compared with the field observations of cracking developments on the CRCP sections in Belgium. The FE results indicate that the vertical tensile stress in concrete near the longitudinal steel bar develops at the transverse crack interface. It translates that the horizontal crack perpendicular to the vertical concrete stress can initiate from the transverse crack depending on the magnitude of stress against developing concrete tensile strength. It has also been observed that the deeper the saw-cut, the larger the magnitude of vertical tensile stress and the higher incident of horizontal cracking. Moreover, the developed 3D FE model can be further used to optimize the early-age behaviour of CRCP in advance of costly field trials.</p>


Sign in / Sign up

Export Citation Format

Share Document