ultrasonic tomography
Recently Published Documents


TOTAL DOCUMENTS

342
(FIVE YEARS 75)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Luc Rens ◽  
Anne Beeldens

Continuously reinforced concrete pavements are known for their durability and longevity as well as for the driving comfort, thanks to the absence of transverse joints. The strength and weakness of CRCP is situated in the network of fine transverse shrinkage cracks whose spacing distance and opening width are determining the pavement behaviour. The most commonly known distress is the punch-out: a fragmentation of the concrete over full depth. During the last decade, a new type of distress was encountered at Belgian worksites. It is characterised by a delamination at the level of the longitudinal reinforcement, a partial fragmentation of the pavement, mostly positioned under the wheel tracks. The first case was the worksite "N49 at Zwijndrecht", where severe distresses were observed after three years of service. An examination with the technique of ultrasonic tomography detected the presence of horizontal cracks at the level of the reinforcement. The use of recycled concrete aggregates was supposed to be the cause. A significant indicator was also the presence of widely opened cracks. In the period 2011-2018 other cases were observed in Belgium, some of them leading to early degradation and others not. Also in other countries (South-Korea, U.S., Japan, ...) distresses due to horizontal cracking were reported. Based upon observations an analysis is made of the main parameters that may cause the wide initial cracks: the use of recycled aggregates, temperature and temperature changes during construction and concrete quality. Preventative measures such as active crack control will be presented.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mengchao Yi ◽  
Fachao Jiang ◽  
Languang Lu ◽  
Sixuan Hou ◽  
Jianqiao Ren ◽  
...  

Lithium-ion batteries are widely used in electric vehicles and energy storage systems. Sudden fire accident is one of the most serious issue, which is mainly caused by unpredicted internal short circuit. Metal particle defect is a key factor in internal short circuit it will not show an obvious abnormal change in battery external characteristic just like mechanical and thermal abuse. So, a non-destructive testing of battery internal metal defect is very necessary. This study is first time to scan and analyze different types of defects inside a battery by using ultrasonic technology, and it shows the detection capability boundary of this methodology. A non-contact ultrasonic scanning system with multi-channel was built to scan the battery sample with aluminum foil, copper foil and copper powder defects. The position and shape of those defects were clearly shown by using tomography methodology. It was found that the acoustic properties difference between metal defects and battery active materials has a strong influence on detection sensitivity. Compared with aluminum foil, copper foil and copper powder are easier to be detected and change the ultrasonic signal greatly, they will produce an obvious shadowing artifacts and speed displacement phenomena in tomography images. Ultrasonic tomography technology is an effective method for non-destructive testing of lithium-ion batteries.


2021 ◽  
pp. 15-25
Author(s):  
В.К. Качанов ◽  
И.В. Соколов ◽  
Р.В. Концов ◽  
М.Б. Федоров ◽  
В.В. Первушин

It is shown that should be used adaptive antenna arrays, the shape of which can take the form of a non-planar surface of the tested product, for ultrasonic tomography of concrete building structures with a non-standard surface configuration. It should also be used adaptive methods of ultrasound tomography, which allows both to determine the coordinates of defects and the velocity of ultrasound in concrete, as well as adjust the parameters of the probing signals to the characteristics of concrete products.


Ultrasonics ◽  
2021 ◽  
pp. 106666
Author(s):  
Danilo Pereira dos Santos ◽  
Vladimir Guilherme Haach

2021 ◽  
Vol 1203 (3) ◽  
pp. 032058
Author(s):  
Monika Zielińska ◽  
Magdalena Rucka

Abstract Examining the condition of wooden elements is crucial from the perspective of proper structure performance. If the deterioration in the internal wood condition, which displays no symptoms visible from the outside, is detected, the further spread of the deterioration can be prevented. Test results often point to the necessity of conducting repairs and, renovations, replacing the structure of wooden beams, or even substituting a significant part of the structure. To achieve acceptable results, test methods should take into account the anisotropic nature of wood, which includes the shape of annual rings, as well as the location of the core in crosssection. To adopt methods based on physical effects, profound knowledge of wood physics is needed, particularly of interdependence. Apart from simple tests such as a visual inspection or tapping that are used to determine near-surface defects, non-destructive testing (NDT) plays an important role in the process. This paper presents the methods of non-destructive testing of wooden elements. These methods include tests conducted with ground penetrating radar (GPR), thermal techniques, microwaves, acoustic emission, ultrasonic tomography, and X-ray tomography. The paper summarises the use of non-destructive methods, indicating their advantages, disadvantages as well as some limitations.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1114
Author(s):  
Giuseppe Casula ◽  
Silvana Fais ◽  
Francesco Cuccuru ◽  
Maria Giovanna Bianchi ◽  
Paola Ligas ◽  
...  

This study presents the integrated application of a few non-destructive techniques, i.e., Close Range Photogrammetry (CRP), and low frequency (24 kHz) ultrasonic tomography complemented by petrographical analysis. The aim here is to assess the conservation state of a Carrara marble column in the Basilica of San Saturnino, which is part of a V-VI century Palaeo Christian complex in the city of Cagliari (Italy). The high resolution 3D modelling of the studied artifact was computed starting from the integration of proximal sensing techniques, such as CRP based on the Structure from Motion (SfM) technique, which provided information on the geometrical anomalies and reflectivity of the investigated marble column surface. The inner parts of the studied body were inspected successfully in a non-invasive way by computing the velocity pattern of the ultrasonic signal through the investigated materials, using 3D ultrasonic tomography. The latter was optimally designed based on the 3D CRP analysis and the locations of the source and receiver points were detected as accurately as possible. The integrated application of in situ CRP and ultrasonic techniques provided a full 3D high resolution model of the investigated artifact, which made it possible to evaluate the material characteristics and its degradation state, affecting mainly the shallower parts of the column. The 3D visualisation improves the efficiency, accuracy, and completeness of the interpretative process of data of a different nature in quite easily understood displays, as well as the communication between different technicians.


2021 ◽  
Author(s):  
Yifang Li ◽  
Qinzhen Shi ◽  
Yuan Liu ◽  
Lingwei Shi ◽  
Meilin Gu ◽  
...  

2021 ◽  
Vol 11 (14) ◽  
pp. 6630
Author(s):  
Bernardo Anes ◽  
Joao Figueiredo ◽  
Mouhaydine Tlemçani

Nowadays, the inner shape and economic viability of a stone block is dependent on the skill and experience of the “expert” that makes predictions based on external observations. This actual procedure is an extremely high empirical method, and when it fails, substantial work, time, and money is wasted. At present, researchers are committed to developing models to predict the stone block internal structure based on non-destructive tests. Ultrasonic tomography and electrical resistivity tomography are the tests that best fit these objectives. Trying to improve the existing procedures for collecting stone information and data exporting, a novel approach to perform both tomographies is proposed in this paper. This novel approach presents sound advantages regarding the current manual procedure: namely, (i) high accuracy due to a new automatic positioning system; (ii) no need for highly skilled operators to process measurements; (iii) measurements are much easier to derive, and results are quickly delivered. A comparison between the new automatic process and the current manual procedure shows that the manual procedure has a very low accuracy when compared to the new developed automatic system. The automatic measurements show extremely significant time savings, which is a relevant issue for the future competitiveness of the stone sector.


Sign in / Sign up

Export Citation Format

Share Document