Field Performance Evaluation of High Polymer-Modified Asphalt Concrete Overlays

Author(s):  
Jhony Habbouche ◽  
Ilker Boz ◽  
Brian K. Diefenderfer ◽  
Benjamin F. Bowers

The objective of this paper was to assess the viability of using high polymer (HP) modified asphalt concrete (AC) mixtures in Virginia as a reflective crack mitigation technique or when deemed appropriate as a tool for increased crack resistance on higher volume facilities. This was achieved by compiling and evaluating routine distress survey data against pre-paving distress survey data for relevant in-service HP pavements constructed between 2015 and 2018 and comparing them with several control in-service conventional polymer-modified asphalt (PMA) pavements. This is the first effort in North America to provide a detailed field performance of HP AC mixtures. In general, none of the evaluated mixtures (HP or PMA) was able to prevent reflective cracking completely. The HP sections showed the most promising performance 5 years after construction regardless of traffic level and the pre-existing pavement conditions. The pavement management system data for the reviewed sections indicated a potential controlling effect of the joint condition of the underlying jointed concrete pavement layer regardless of the asphalt mixture type employed (PMA or HP). Moreover, performance evaluations using the network-level pavement management data were conducted to estimate the life expectancy of HP AC overlays. Two different approaches and three levels of analysis were undertaken. Overall, PMA and HP AC overlays had an average predicted service life of 6.2 and 8.3 years, respectively, indicating a 34% extension of performance life of the AC overlays with high polymer modification.

Author(s):  
Ani Tjitra Handayani ◽  
Bagus Hario Setiaji ◽  
Sri Prabandiyani

Asphalt Concrete mixture of polymer modification are used to reduce the damage early and increasing the durability of pavement to various damage such as permanent deformation, cracking due to temperature changes, fatigue During this process the polymer asphalt mixing using Hot Mix Asphalt / HMA. In accordance with the name and nature of hot mix asphalt, require high enough heating temperature on the Asphalt Mixing Plant (AMP), and also requires a high temperature compaction. As a result, it takes quite a lot of fuel so produced a large exhaust emissions. Emissions generated during the mixing process and compaction of HMA is a challenge for the environment. Some countries have developed a method of asphalt mixture to overcome this by using Warm Mix Asphalt technology. Warm Mix Asphalt is the technology of mixing and compaction temperatures of asphalt mixtures using mixing and compaction temperatures lower than Hot Mix Asphalt. Decreasing the mixing and compaction temperatures by adding additives to the asphalt mixture. Types of additives that have been widely used and developed for Warm Mix Asphalt them is the use of synthetic zeolites with various trademarks such as Aspha-min (R), Sasobit(R) dan Advera(R). In this paper the synthetic zeolite will be replaced by natural zeolite as an additive to be mixed with a mixture of Polymer Modified Asphalt Concrete. This study uses laboratory testing, using aggregate materials from Subang, West Java, Asphalt Elastomer Polymers, natural zeolite mineral mordenite sourced from Bayat, Central Java, Indonesia. Tests using a mixture Marshall Test. Marshall test results stated that the levels of natural zeolite 1% can reduce the temperature of mixing and compaction temperatures on Polymer Modified Concrete Asphalt mix 30°C, lower than the temperature of the mixture of Polymer Modified Asphalt Concrete without zeolite. Keywords: additive, Natural Zeolites, Warm Mixed Asphalt, Polymer Modified Asphalt Concrete


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2282
Author(s):  
Hamad Abdullah Alsolieman ◽  
Ali Mohammed Babalghaith ◽  
Zubair Ahmed Memon ◽  
Abdulrahman Saleh Al-Suhaibani ◽  
Abdalrhman Milad

Polymer modification is extensively used in the Kingdom of Saudi Arabia (KSA) because the available asphalt cement does not satisfy the high-temperature requirements. It was widely used in KSA for more than two decades, and there is little information regarding the differences in the performance of different polymers approved for binder modification. Pavement engineers require performance comparisons among various polymers to select the best polymer for modification rather than make their selection based on satisfying binder specifications. Furthermore, the mechanical properties can help select polymer type, producing mixes of better resistance to specific pavement distresses. The study objective was to compare the mechanical properties of the various polymer-modified asphalt (PMA) mixtures that are widely used in the Riyadh region. Control mix and five other mixes with different polymers (Lucolast 7010, Anglomak 2144, Pavflex140, SBS KTR 401, and EE-2) were prepared. PMA mixtures were evaluated through different mechanical tests, including dynamic modulus, flow number, Hamburg wheel tracking, and indirect tensile strength. The results show an improvement in mechanical properties for all PMA mixtures relative to the control mixture. Based on the overall comparison, the asphalt mixture with polymer Anglomk2144 was ranked the best performing mixture, followed by Paveflex140 and EE-2.


2021 ◽  
Vol 50 (2) ◽  
pp. 20210283
Author(s):  
Jhony Habbouche ◽  
Murugaiyah Piratheepan ◽  
Elie Y. Hajj ◽  
Sailesh Bista ◽  
Peter E. Sebaaly

2021 ◽  
pp. 959-966
Author(s):  
Jhony Habbouche ◽  
Peter E. Sebaaly ◽  
Elie Y. Hajj ◽  
Murugaiyah Piratheepan

2003 ◽  
Vol 30 (2) ◽  
pp. 406-413 ◽  
Author(s):  
Kwang W Kim ◽  
Seung Jun Kweon ◽  
Young S Doh ◽  
Tae-Soon Park

The fracture toughness of asphalt concrete increases at low temperature and then decreases at temperatures below a certain level. Some polymers are known to have the property of improving the temperature susceptibility of asphalt binder at low temperatures. Therefore, this study evaluated the fracture toughness (KIC) of some polymer-modified asphalt concretes. Low-density polyethylene (LDPE), styrene–butadiene–styrene (SBS), and a mixed polymer of LDPE and SBS were used in this study. The fracture toughness KIC of normal asphalt concrete was compared with that of polymer-modified asphalt (PMA) concrete, and the effectiveness of polymer modification against falling values of KIC was evaluated at low temperatures. The results showed that PMA concretes, in general, showed better KIC than normal asphalt concretes, and the temperature at which the highest KIC was obtained was lower than that in the case of normal asphalt concrete. Therefore, the PMA concretes evaluated in this study had better fracture resistance than normal asphalt at low temperatures.Key words: asphalt concrete, polymer-modified asphalt, PMA, fracture toughness, differential thermal contraction, low-temperature damage.


2012 ◽  
Vol 510 ◽  
pp. 478-483 ◽  
Author(s):  
Zu Zhong Li ◽  
Shuan Fa Chen ◽  
Wei Dong Liao ◽  
Rui Xing Yuan

Currently, researches on anti-cracking performance of asphalt concrete overlays on old concrete pavement for fatigue are still in the early stage of explorations and trials. The reflective crack simulation tests of bending and shearing styles with six asphalt overlays were carried out in order to evaluate the anti-cracking effects of different kinds of anti-cracking materials. It is suggested that Sampave modified asphalt mixture with independent development has excellent anti-cracking performance for fatigue, which provides an experimental reason for extending the anti-cracking technique in stress absorbing layers. Although anti-cracking performances of glass fiber grid and tricot geofabric reinforced composites are better, it is not as good as the one of Sampave. And the effect of paving asphalt concrete directly on old cement concrete pavement is worse.


Sign in / Sign up

Export Citation Format

Share Document