Modal Analysis-Based Reduced-Order Models for Nonlinear Structures--An Invariant Manifold Approach

1999 ◽  
Vol 31 (1) ◽  
pp. 3-16 ◽  
Author(s):  
S. W. Shaw ◽  
C. Pierre ◽  
E. Pesheck
Author(s):  
Sangram Redkar ◽  
S. C. Sinha

In this work, the basic problem of order reduction nonlinear systems subjected to an external periodic excitation is considered. This problem deserves attention because the modes that interact (linearly or nonlinearly) with the external excitation dominate the response. A linear approach like the Guyan reduction does not always guarantee accurate results, particularly when nonlinear interactions are strong. In order to overcome limitations of the linear approach, a nonlinear order reduction methodology through a generalization of the invariant manifold technique is proposed. Traditionally, the invariant manifold techniques for unforced problems are extended to the forced problems by ‘augmenting’ the state space, i.e., forcing is treated as an additional degree of freedom and an invariant manifold is constructed. However, in the approach suggested here a nonlinear time-dependent relationship between the dominant and the non-dominant states is assumed and the dimension of the state space remains the same. This methodology not only yields accurate reduced order models but also explains the consequences of various ‘primary’ and ‘secondary resonances’ present in the system. Following this approach, various ‘reducibility conditions’ are obtained that show interactions among the eigenvalues, the nonlinearities and the external excitation. One can also recover all ‘resonance conditions’ commonly obtained via perturbation or averaging techniques. These methodologies are applied to some typical problems and results for large-scale and reduced order models are compared. It is anticipated that these techniques will provide a useful tool in the analysis and control of large-scale externally excited nonlinear systems.


Author(s):  
Sangram Redkar ◽  
S. C. Sinha

In this work, some techniques for order reduction of nonlinear systems with periodic coefficients subjected to external periodic excitations are presented. The periodicity of the linear terms is assumed to be non-commensurate with the periodicity of forcing vector. The dynamical equations of motion are transformed using the Lyapunov-Floquet (L-F) transformation such that the linear parts of the resulting equations become time-invariant while the forcing and/or nonlinearity takes the form of quasiperiodic functions. The techniques proposed here; construct a reduced order equivalent system by expressing the non-dominant states as time-varying functions of the dominant (master) states. This reduced order model preserves stability properties and is easier to analyze, simulate and control since it consists of relatively small number of states in comparison with the large scale system. Specifically, two methods are outlined to obtain the reduced order model. First approach is a straightforward application of linear method similar to the ‘Guyan reduction’, the second novel technique proposed here, utilizes the concept of ‘invariant manifolds’ for the forced problem to construct the fundamental solution. Order reduction approach based on invariant manifold technique yields unique ‘reducibility conditions’. If these ‘reducibility conditions’ are satisfied only then an accurate order reduction via ‘invariant manifold’ is possible. This approach not only yields accurate reduced order models using the fundamental solution but also explains the consequences of various ‘primary’ and ‘secondary resonances’ present in the system. One can also recover ‘resonance conditions’ associated with the fundamental solution which could be obtained via perturbation techniques by assuming weak parametric excitation. This technique is capable of handing systems with strong parametric excitations subjected to periodic and quasi-periodic forcing. These methodologies are applied to a typical problem and results for large-scale and reduced order models are compared. It is anticipated that these techniques will provide a useful tool in the analysis and control system design of large-scale parametrically excited nonlinear systems subjected to external periodic excitations.


Author(s):  
Sangram Redkar ◽  
S. C. Sinha

In this work, some techniques for order reduction of nonlinear systems involving periodic/quasiperiodic coefficients are presented. The periodicity of the linear terms is assumed non-commensurate with the periodicity of either the nonlinear terms or the forcing vector. The dynamical evolution equations are transformed using the Lyapunov-Floquet (L-F) transformation such that the linear parts of the resulting equations become time-invariant while the nonlinear parts and forcing take the form of quasiperiodic functions. The techniques proposed here construct a reduced order equivalent system by expressing the non-dominant states as time-modulated functions of the dominant (master) states. This reduced order model preserves stability properties and is easier to analyze, simulate and control since it consists of relatively small number of states. Three methods are proposed to carry out this model order reduction (MOR). First type of MOR technique is a linear method similar to the ‘Guyan reduction’, the second technique is a nonlinear projection method based on singular perturbation while the third method utilizes the concept of ‘quasiperiodic invariant manifold’. Order reduction approach based on invariant manifold technique yields a unique ‘generalized reducibility condition’. If this ‘reducibility condition’ is satisfied only then an accurate order reduction via invariant manifold is possible. Next, the proposed methodologies are extended to solve the forced problem. All order reduction approaches except the invariant manifold technique can be applied in a straightforward way. The invariant manifold formulation is modified to take into account the effects of forcing and nonlinear coupling. This approach not only yields accurate reduced order models but also explains the consequences of various ‘primary’ and ‘secondary resonances’ present in the system. One can also recover all ‘resonance conditions’ obtained via perturbation techniques by assuming weak parametric excitation. This technique is capable of handing systems with strong parametric excitations subjected to periodic and quasi-periodic forcing. These methodologies are applied to some typical problems and results for large-scale and reduced order models are compared. It is anticipated that these techniques will provide a useful tool in the analysis and control system design of large-scale parametrically excited nonlinear systems.


Author(s):  
Allen Mathis ◽  
D. Dane Quinn

Almost every modern engineering structure incorporates some form of mechanical interface, a connection between two otherwise separate mechanical structures. Complex machines and structures such as automobiles, bridges, aircraft, rockets, etc. rely heavily on these interfaces; however, high-fidelity numerical analysis of such connected structures is currently extremely difficult and computationally expensive due to the disparate length and time scales of the interface as compared to those characterizing the overall structure. This paper utilizes recent work in modal analysis of joints using reduced-order models to study the nonlinear effects of these systems while remaining computationally tractable.


Author(s):  
Sangram Redkar ◽  
S. C. Sinha

In this work, the basic problem of order reduction of nonlinear systems subjected to an external periodic excitation is considered. This problem deserves special attention because modes that interact (linearly or nonlinearly) with external excitation dominate the response. These dominant modes are identified and chosen as the “master” modes to be retained in the reduction process. The simplest idea could be to use a linear approach such as the Guyan reduction and choose those modes whose natural frequencies are close to that of external excitation as the master modes. However, this technique does not guarantee accurate results when nonlinear interactions are strong and a nonlinear approach must be adopted. Recently, the invariant manifold technique has been extended to forced problems by “augmenting” the state space, i.e., forcing is treated as an additional state and an invariant manifold is constructed. However, this process does not provide a clear picture of possible resonances and conditions under which an order reduction is possible. In a direct innovative approach suggested here, a nonlinear time-dependent relationship between the dominant and nondominant states is assumed and the dimension of the state space remains the same. This methodology not only yields accurate reduced order models but also explains the consequences of various primary and secondary resonances present in the system. One obtains various reducibility conditions in a closed form, which show interactions among eigenvalues, nonlinearities and the external excitation. One can also recover all “resonance conditions” obtained via perturbation or averaging techniques. The “linear” as well as the “extended invariant manifold” techniques are applied to some typical problems and results for large-scale and reduced order models are compared. It is anticipated that these techniques will provide a useful tool in the analysis and control of large-scale externally excited nonlinear systems.


Sign in / Sign up

Export Citation Format

Share Document