An improved procedure to implement NSGA-III in coordinate waste management for urban agglomeration

2019 ◽  
Vol 37 (11) ◽  
pp. 1161-1169 ◽  
Author(s):  
Lili Qu ◽  
Zhihao Zhou ◽  
Tianzhu Zhang ◽  
Huanan Zhang ◽  
Lei Shi

With the growth of urbanization in countries globally, large cities have often formed clusters of urban agglomerations in metropolitan areas. The coordinated management of regional solid waste produced by such urban agglomeration poses a typical high-dimensional, multi-objective optimization issue. This paper aims to introduce a procedure to implement the third-generation genetic algorithm (NSGA-III), an established multi-objective genetic algorithm based on non-dominated sorting mechanisms, for the purpose of evaluating environmental and economic benefits simultaneously while seeking the optimal solutions for coordinated management among multiple recycling centres. In this study, two series of scenarios were abstracted from scrap tire recycling, representing linear calculation and nonlinear calculation cases separately. Several improvements were made to the originally published NSGA-III procedure that solve the problem of non-convergence for hypervolumes of the output. Through comparisons of calculation results, an improved procedure is suggested and shown to have improved performance.

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Hongjing Wei ◽  
Shaobo Li ◽  
Huafeng Quan ◽  
Dacheng Liu ◽  
Shu Rao ◽  
...  

2011 ◽  
Vol 264-265 ◽  
pp. 1719-1724 ◽  
Author(s):  
A.K.M. Mohiuddin ◽  
Md. Ataur Rahman ◽  
Yap Haw Shin

This paper aims to demonstrate the effectiveness of Multi-Objective Genetic Algorithm Optimization and its practical application on the automobile engine valve timing where the variation of performance parameters required for finest tuning to obtain the optimal engine performances. The primary concern is to acquire the clear picture of the implementation of Multi-Objective Genetic Algorithm and the essential of variable valve timing effects on the engine performances in various engine speeds. Majority of the research works in this project were in CAE software environment and method to implement optimization to 1D engine simulation. The paper conducts robust design optimization of CAMPRO 1.6L (S4PH) engine valve timing at various engine speeds using multiobjective genetic algorithm (MOGA) for the future variable valve timing (VVT) system research and development. This paper involves engine modelling in 1D software simulation environment, GT-Power. The GT-Power model is run simultaneously with mode Frontier to perform multiobjective optimization.


Sign in / Sign up

Export Citation Format

Share Document