scholarly journals Fire resistance of composite non-load bearing light steel framing walls

2020 ◽  
Vol 38 (2) ◽  
pp. 136-155
Author(s):  
Seddik M Khetata ◽  
Paulo AG Piloto ◽  
Ana BR Gavilán

The light steel frame walls are mostly used for non-load bearing applications. The light steel framed walls are made with studs and tracks that require fire protection, normally achieved by single plasterboard, by composite protection layers or by insulation of the cavity. The partition walls are fire rated to resist by integrity and insulation. Seven small-scale specimens were tested to define the fire resistance of non-load bearing light steel frame walls made with different materials. All tests were validated using two-dimensional numerical models, based on the finite-element method, the finite-volume method and hybrid finite-element method. A good agreement was achieved between the numerical and the experimental results from fire tests. The fire resistance increases with the number of studs and also with the thickness of the protection layers. The hybrid finite-element method solution method looks to be the best approximation model to predict fire resistance.

2015 ◽  
Vol 62 (1) ◽  
pp. 101-114 ◽  
Author(s):  
Iwona Adamiec-Wójcik ◽  
Andrzej Nowak ◽  
Stanisław Wojciech

Abstract The rigid finite element method (RFEM) has been used mainly for modelling systems with beam-like links. This paper deals with modelling of a single set of electrodes consisting of an upper beam with electrodes, which are shells with complicated shapes, and an anvil beam. Discretisation of the whole system, both the beams and the electrodes, is carried out by means of the rigid finite element method. The results of calculations concerned with free vibrations of the plates are compared with those obtained from a commercial package of the finite element method (FEM), while forced vibrations of the set of electrodes are compared with those obtained by means of the hybrid finite element method (HFEM) and experimental measurements obtained on a special test stand.


Sign in / Sign up

Export Citation Format

Share Document