In vivo evaluation of calcium polyphosphate for bone regeneration

2011 ◽  
Vol 27 (3) ◽  
pp. 267-275 ◽  
Author(s):  
Patricia A Comeau ◽  
Hanspeter Frei ◽  
Chiming Yang ◽  
Goran Fernlund ◽  
Fabio M Rossi
Nanomaterials ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 46 ◽  
Author(s):  
Manabu Tanaka ◽  
Yoshinori Sato ◽  
Mei Zhang ◽  
Hisao Haniu ◽  
Masanori Okamoto ◽  
...  

2011 ◽  
Vol 22 (1-3) ◽  
pp. 263-275 ◽  
Author(s):  
Jidong Li ◽  
Yi Man ◽  
Yi Zuo ◽  
Li Zhang ◽  
Cui Huang ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1186
Author(s):  
Lívia da Costa Pereira ◽  
Carlos Fernando de Almeida Barros Mourão ◽  
Adriana Terezinha Neves Novellino Alves ◽  
Rodrigo Figueiredo de Brito Resende ◽  
Marcelo José Pinheiro Guedes de Uzeda ◽  
...  

This study’s aim was to evaluate the biocompatibility and bioabsorption of a new membrane for guided bone regeneration (polylactic-co-glycolic acid associated with hydroxyapatite and β-tricalcium phosphate) with three thicknesses (200, 500, and 700 µm) implanted in mice subcutaneously. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and the quantification of carbon, hydrogen and nitrogen were used to characterize the physico-chemical properties. One hundred Balb-C mice were divided into 5 experimental groups: Group 1—Sham (without implantation); Group 2—200 μm; Group 3—500 μm; Group 4—700 μm; and Group 5—Pratix®. Each group was subdivided into four experimental periods (7, 30, 60 and 90 days). Samples were collected and processed for histological and histomorphometrical evaluation. The membranes showed no moderate or severe tissue reactions during the experimental periods studied. The 500-μm membrane showed no tissue reaction during any experimental period. The 200-μm membrane began to exhibit fragmentation after 30 days, while the 500-μm and 700-µm membranes began fragmentation at 90 days. All membranes studied were biocompatible and the 500 µm membrane showed the best results for absorption and tissue reaction, indicating its potential for clinical guided bone regeneration.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Philipp S. Lienemann ◽  
Stéphanie Metzger ◽  
Anna-Sofia Kiveliö ◽  
Alain Blanc ◽  
Panagiota Papageorgiou ◽  
...  

2001 ◽  
Vol 12 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Luiz A. Salata ◽  
Paul V. Hatton ◽  
A. Jane Devlin ◽  
Geoffrey T. Craig ◽  
Ian M. Brook

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Beom Su Kim ◽  
Feride Shkembi ◽  
Jun Lee

Alendronate (ALN) is a bisphosphonate drug that is widely used for the treatment of osteoporosis. Furthermore, local delivery of ALN has the potential to improve the bone regeneration. This study was designed to investigate an ALN-containing fibrin (fibrin/ALN) gel and evaluate the effect of this gel on both in vitro cellular behavior using human mesenchymal stem cells (hMSCs) and in vivo bone regenerative capacity. Fibrin hydrogels were fabricated using various ALN concentrations (10−7–10−4 M) with fibrin glue and the morphology, mechanical properties, and ALN release kinetics were characterized. Proliferation and osteogenic differentiation of and cytotoxicity in fibrin/ALN gel-embedded hMSCs were examined. In vivo bone formation was evaluated using a rabbit calvarial defect model. The fabricated fibrin/ALN gel was transparent with Young’s modulus of ~13 kPa, and these properties were not affected by ALN concentration. The in vitro studies showed sustained release of ALN from the fibrin gel and revealed that hMSCs cultured in fibrin/ALN gel showed significantly increased proliferation and osteogenic differentiation. In addition, microcomputed tomography and histological analysis revealed that the newly formed bone was significantly enhanced by implantation of fibrin/ALN gel in a calvarial defect model. These results suggest that fibrin/ALN has the potential to improve bone regeneration.


Author(s):  
Yusuke Sakaguchi ◽  
Kyohei Toyonaga ◽  
Yuuhiro Sakai ◽  
Emiko Arima ◽  
Shinichi Kato ◽  
...  

2004 ◽  
Vol 455-456 ◽  
pp. 374-377 ◽  
Author(s):  
J. Miguel Oliveira ◽  
Takahiro Kawai ◽  
M.A. Lopes ◽  
Chikara Ohtsuki ◽  
José D. Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document