Bioactive tetracalcium phosphate/magnesium phosphate composite bone cement for bone repair

2019 ◽  
Vol 34 (2) ◽  
pp. 239-249 ◽  
Author(s):  
Jingxian Liu ◽  
Jianguo Liao ◽  
Yanqun Li ◽  
Zhengpeng Yang ◽  
Qiwei Ying ◽  
...  
2019 ◽  
Vol 6 (10) ◽  
pp. 191028 ◽  
Author(s):  
Xing Liu ◽  
Can Cheng ◽  
Xu Peng ◽  
Hong Xiao ◽  
Chengrui Guo ◽  
...  

Polymethyl methacrylate (PMMA) bone cement has been widely used in clinics as bone repair materials for its excellent mechanical properties and good injection properties. However, it also has defects such as poor biological performance, high temperature, and the monomer has certain toxicity. Our study tried to modify the PMMA bone cement by doping with various particle weight fractions (5, 10 and 15%) of SCPP particles and polydopamine-coated SCPP particles (D/SCPP) to overcome its clinical application disadvantages. Our study showed that all results of physical properties of samples are in accordance with ISO 5833. The 15% D/SCPP/PMMA composite bone cement had much better biocompatibility compared with pure PMMA bone cement and SCPP/PMMA composite bone cement due to the best cell growth-promoting mineralization deposition on the surface of 15% D/SCPP/PMMA composite bone cements and Sr 2+ released from SCPP particles. Our research also revealed that the reaction temperature was found to be reduced with an increase in doped particles after incorporating the particles into composite bone cements. The novel PMMA bone cements modified by D/SCPP particles are promising materials for bone repair.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Che Nor Zarida Che Seman ◽  
Zamzuri Zakaria ◽  
Zunariah Buyong ◽  
Mohd Shukrimi Awang ◽  
Ahmad Razali Md Ralib @ Md Raghib

Introduction: A novel injectable calcium phosphate bone cement (osteopaste) has been developed. Its potential application in orthopaedics as a filler of bone defects has been studied. The biomaterial was composed of tetra-calcium phosphate (TTCP) and tricalcium phosphate (TCP) powder. The aim of the present study was to evaluate the healing process of osteopaste in rabbit tibia. Materials and method: The implantation procedure was carried out on thirty-nine of New Zealand white rabbits. The in vivo bone formation was investigated by either implanting the Osteopaste, Jectos or MIIG – X3 into a critical size defect (CSD) model in the proximal tibial metaphysis. CSD without treatment served as negative control. After 1 day, 6 and 12 weeks, the rabbits were euthanized, the bone were harvested and subjected for analysis. Results: Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. There was direct contact between osteopaste material and host bone. The new bone was seen bridging the defect. Conclusion: The result showed that Osteopaste could be a new promising biomaterial for bone repair and has a potential in bone tissue engineering.


2010 ◽  
Vol 76 (2) ◽  
pp. 496-504 ◽  
Author(s):  
Yonglin Yu ◽  
Jing Wang ◽  
Changsheng Liu ◽  
Bingwen Zhang ◽  
Honghong Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document