scholarly journals Preliminary in Vivo Evaluation of Bone Healing in Critical Size Bone Defects Implanted with an Injectable Calcium Phosphate Bone Cement (Osteopaste)

2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Che Nor Zarida Che Seman ◽  
Zamzuri Zakaria ◽  
Zunariah Buyong ◽  
Mohd Shukrimi Awang ◽  
Ahmad Razali Md Ralib @ Md Raghib

Introduction: A novel injectable calcium phosphate bone cement (osteopaste) has been developed. Its potential application in orthopaedics as a filler of bone defects has been studied. The biomaterial was composed of tetra-calcium phosphate (TTCP) and tricalcium phosphate (TCP) powder. The aim of the present study was to evaluate the healing process of osteopaste in rabbit tibia. Materials and method: The implantation procedure was carried out on thirty-nine of New Zealand white rabbits. The in vivo bone formation was investigated by either implanting the Osteopaste, Jectos or MIIG – X3 into a critical size defect (CSD) model in the proximal tibial metaphysis. CSD without treatment served as negative control. After 1 day, 6 and 12 weeks, the rabbits were euthanized, the bone were harvested and subjected for analysis. Results: Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. There was direct contact between osteopaste material and host bone. The new bone was seen bridging the defect. Conclusion: The result showed that Osteopaste could be a new promising biomaterial for bone repair and has a potential in bone tissue engineering.

2021 ◽  
Vol 32 (1) ◽  
pp. 26-33
Author(s):  
Marina Araujo Brito ◽  
Leomar Emanuel Almeida Mecca ◽  
Thais dos Santos Sedoski ◽  
Tayline Mroczek ◽  
Marcela Claudino ◽  
...  

Abstract The limited options for bone repair have led to an extensive research of the field and the development of alloplastic and xenogeneic grafts. The purpose of this study was to evaluate bone repair with two bone substitutes: deproteinized bovine bone (DBB) and biphasic calcium phosphate ceramic (BCP) in critical-size defect. A total of 8-mm defects were made in the parietal bones of rabbits (n=12). The animals were divided into three experimental groups: sham (defect filled with a blood clot), DBB (defect filled with DBB), and BCP (defect filled with BCP). After the experimental periods of 15 and 45 days, the animals were euthanized and submitted to histomorphometric analysis. The total defect area, mineralized tissue area, biomaterial area, and soft tissue area were evaluated. A greater amount of immature bone tissue and biomaterial particles were observed in the BCP group compared to DBB and sham at 45 days (p<0.05). There was no difference in the qualitative pattern of bone deposition between DBB and BCP. However, the sham group did not show osteoid islands along with the defect, presenting a greater amount of collagen fibers as well in relation to the DBB and BCP groups. There was a greater number of inflammatory cells in the DBB at 45 days compared to BCP and sham groups. In conclusion, BCP and DBB are options for optimizing the use of bone grafts for maxillofacial rehabilitation. Bone defects treated with BCP showed greater deposition of bone tissue at 45 days.


Author(s):  
National Research Mamonov ◽  
National Research Chemis ◽  
National Research Drize ◽  
National Research Proskurina ◽  
I. I. Kryazhkov ◽  
...  

Results of experimental morphologic study of tricomponent resorbable calcium phosphate bone cement (CPhC), based on tricalcium phosphate for the filling of defect as a temporary bearing resorbable matrix are presented. Study was performed on soviet chinchilla rabbits weighting 3200-3500 g. The model of critical spongy bone defect was used. At different observation terms (6, 9 and 12 months) gradual substitution of biomaterial with newly formed bone tissue from periphery to the center was observed with complete cement resorption 12 months after surgery. By mechanic characteristics newly formed bone in the defect was stronger than the surrounding trabecular one. It was stated that material possessed hemostatic effect and moderate toxicity. Peripheral bone marrow maintained its cellularity at all terms, gradually filling intertrabecular space of newly formed bone. Achieved data enable to recommend wide used of CPhC for bone defects substitution.


2014 ◽  
Vol 21 (1) ◽  
pp. 72-77
Author(s):  
National Research Center for Hematology, Moscow, RF Mamonov ◽  
National Research Center for Hematology, Moscow, RF Chemis ◽  
National Research Center for Hematology, Moscow, RF Drize ◽  
National Research Center for Hematology, Moscow, RF Proskurina ◽  
I. I Kryazhkov ◽  
...  

Results of experimental morphologic study of tricomponent resorbable calcium phosphate bone cement (CPhC), based on tricalcium phosphate for the filling of defect as a temporary bearing resorbable matrix are presented. Study was performed on soviet chinchilla rabbits weighting 3200-3500 g. The model of critical spongy bone defect was used. At different observation terms (6, 9 and 12 months) gradual substitution of biomaterial with newly formed bone tissue from periphery to the center was observed with complete cement resorption 12 months after surgery. By mechanic characteristics newly formed bone in the defect was stronger than the surrounding trabecular one. It was stated that material possessed hemostatic effect and moderate toxicity. Peripheral bone marrow maintained its cellularity at all terms, gradually filling intertrabecular space of newly formed bone. Achieved data enable to recommend wide used of CPhC for bone defects substitution.


2020 ◽  
Vol 15 (5) ◽  
pp. 055038
Author(s):  
Sirirat T. Rattanachan ◽  
Nuan La-ong Srakaew ◽  
Paritat Thaitalay ◽  
Oranich Thongsri ◽  
Rawee Dangviriyakul ◽  
...  

2019 ◽  
Vol 20 (14) ◽  
pp. 3430 ◽  
Author(s):  
Jaime Freitas ◽  
Susana Gomes Santos ◽  
Raquel Madeira Gonçalves ◽  
José Henrique Teixeira ◽  
Mário Adolfo Barbosa ◽  
...  

The normal bone regeneration process is a complex and coordinated series of events involving different cell types and molecules. However, this process is impaired in critical-size/large bone defects, with non-unions or delayed unions remaining a major clinical problem. Novel strategies are needed to aid the current therapeutic approaches. Mesenchymal stem/stromal cells (MSCs) are able to promote bone regeneration. Their beneficial effects can be improved by modulating the expression levels of specific genes with the purpose of stimulating MSC proliferation, osteogenic differentiation or their immunomodulatory capacity. In this context, the genetic engineering of MSCs is expected to further enhance their pro-regenerative properties and accelerate bone healing. Herein, we review the most promising molecular candidates (protein-coding and non-coding transcripts) and discuss the different methodologies to engineer and deliver MSCs, mainly focusing on in vivo animal studies. Considering the potential of the MSC secretome for bone repair, this topic has also been addressed. Furthermore, the promising results of clinical studies using MSC for bone regeneration are discussed. Finally, we debate the advantages and limitations of using MSCs, or genetically-engineered MSCs, and their potential as promoters of bone fracture regeneration/repair.


2017 ◽  
Vol 8 ◽  
pp. 204173141771207 ◽  
Author(s):  
Mathieu Maisani ◽  
Daniele Pezzoli ◽  
Olivier Chassande ◽  
Diego Mantovani

Tissue engineering is a promising alternative to autografts or allografts for the regeneration of large bone defects. Cell-free biomaterials with different degrees of sophistication can be used for several therapeutic indications, to stimulate bone repair by the host tissue. However, when osteoprogenitors are not available in the damaged tissue, exogenous cells with an osteoblast differentiation potential must be provided. These cells should have the capacity to colonize the defect and to participate in the building of new bone tissue. To achieve this goal, cells must survive, remain in the defect site, eventually proliferate, and differentiate into mature osteoblasts. A critical issue for these engrafted cells is to be fed by oxygen and nutrients: the transient absence of a vascular network upon implantation is a major challenge for cells to survive in the site of implantation, and different strategies can be followed to promote cell survival under poor oxygen and nutrient supply and to promote rapid vascularization of the defect area. These strategies involve the use of scaffolds designed to create the appropriate micro-environment for cells to survive, proliferate, and differentiate in vitro and in vivo. Hydrogels are an eclectic class of materials that can be easily cellularized and provide effective, minimally invasive approaches to fill bone defects and favor bone tissue regeneration. Furthermore, by playing on their composition and processing, it is possible to obtain biocompatible systems with adequate chemical, biological, and mechanical properties. However, only a good combination of scaffold and cells, possibly with the aid of incorporated growth factors, can lead to successful results in bone regeneration. This review presents the strategies used to design cellularized hydrogel-based systems for bone regeneration, identifying the key parameters of the many different micro-environments created within hydrogels.


2007 ◽  
Vol 361-363 ◽  
pp. 1001-1004 ◽  
Author(s):  
Barbara Bracci ◽  
Milena Fini ◽  
Silvia Panzavolta ◽  
Paola Torricelli ◽  
Adriana Bigi

We recently developed a new biomimetic calcium phosphate bone cement enriched with gelatin (GEL-CP) which exhibits improved mechanical properties with respect to the control cement (C-CP) and a good response to osteoblast-like cells. In this work, we have extended the investigation to primary culture of osteoblasts derived from normal (N-OB) and osteopenic (O-OB) sheep bones cultured on samples of GEL-CP, and their behavior was compared to that of cells cultured on C-CP as control. Cell morphology, proliferation, and differentiation were evaluated at 3 and 7 days. Preliminary in vivo tests were carried out onto critical size defects in the radius diaphysis of rats.


2021 ◽  
pp. 088532822198998
Author(s):  
Karl Wu ◽  
Yu-Chun Chen ◽  
Shang M Lin ◽  
Chih-Hung Chang

This study aimed to evaluate the effectiveness of a novel calcitonin-loaded calcium phosphate composite bone cement in vitro and in vivo. The novel composite bone cements were composed of NuROs injectable bone graft substitute, type I collagen, and/or salmon calcitonin. The setting time, porosity, wettability, compressive strength, compressive modulus, and crystallographic structures of cement specimens were determined. Degradation rate, calcitonin release rate, and osteoinductivity were assessed in vitro. In addition, osteogenic effect was examined in a rabbit model of femoral defect. The results revealed that addition of collagen/calcitonin did not substantially alter physical properties and degradation rate of bone cement specimens. Calcitonin was released into culture medium in a two-phase manner. Osteogenic effect of conditioned medium derived from calcitonin containing bone cement was observed. Finally, de novo bone growth and bone mineralization across the bone defect area were observed in rabbits after implantation of composite bone cement specimens. In conclusion, this novel calcitonin-loaded composite calcium phosphate bone cement exhibits biocompatibility, bioresorbability, osteoinductivity, and osteoconductivity, which may be suitable for clinical use.


Author(s):  
Sheeny K. Lan ◽  
Daniel N. Prater ◽  
Russell D. Jamison ◽  
David A. Ingram ◽  
Mervin C. Yoder ◽  
...  

The natural healing process cannot restore form and function to critical size bone defects without the presence of a graft to support and guide tissue regeneration [1]. Critical size bone defects in humans are typically on the order of centimeters or larger [2]. Thus, a major limitation of synthetic grafts or bone tissue engineering constructs is the lack of vascularization to support cell viability after placement in vivo [3]. Cells that participate in bone regeneration, must reside within 150–200 microns of a blood supply in order to gain proper nutrients and to eliminate waste [4]. Consequently, a tissue engineering construct of a clinically relevant size cannot rely on diffusion for transport of nutrients and waste. Previous research has shown that blood vessels can infiltrate scaffolds, but the overall process is too slow to prevent death of cells located in the center of a construct [5].


Author(s):  
K. A. Egiazaryan ◽  
G. D. Lazishvili ◽  
K. I. Akmataliev ◽  
A. P. Ettinger ◽  
A. P. Rat’Ev ◽  
...  

Purpose. To determine the optimum osteoplastic material for activation of reparative osteogenesis and substitution of traumatic defects in metaepiphyseal spongy bone tissue.Material and methods.Comparative experimental morphological study was performed on 12 matured male Chinchilla rabbits with body weight 2500-2800g. A model of critical defects of spongy bone tissue was used. Bone defects were filled with 3 types of osteoplastic material: composite calcium sulphate bone cement; xenogenous hydroxyapatite-based material with granulated paste of synthetic peptides (P-15); β-tricalcium phosphate-based material with gauging liquid (calcium phosphate bone cement).Results.Implantation of calcium sulphate bone cement showed rapid osteogenesis stimulation at terms 1.5 months and reduction of newly formed bone tissue mass by 3rd month due to active resorption of the residual material. Implantation of hydroxyapatite-based material with P-15 resulted in osteogenesis stimulation on its surface however because of its mechanical instability and absence of active resorption of that material only a moderate formation of bone trabeculae was observed. At implantation of β-tricalcium phosphate-based material an active resorption of osteoplastic material, formation of trabecular system and its reorganization into trabecular network of femoral metaepiphyseal spongy bone accompanied by the formation of mature bone trabeculae was noted by month 3.Conclusion. Mechanical stability of osteoplastic material and subsequent gradual resorption as well as formation of mature bine trabeculae indicates the efficacy of β-tricalcium phosphate-based material.


Sign in / Sign up

Export Citation Format

Share Document