Modeling of cutting parameters in turning of PEEK composite using artificial neural networks and adaptive-neural fuzzy inference systems

2021 ◽  
pp. 089270572110130
Author(s):  
Gökçe Özden ◽  
Mustafa Özgür Öteyaka ◽  
Francisco Mata Cabrera

Polyetheretherketone (PEEK) and its composites are commonly used in the industry. Materials with PEEK are widely used in aeronautical, automotive, mechanical, medical, robotic and biomechanical applications due to superior properties, such as high-temperature work, better chemical resistance, lightweight, good absorbance of energy and high strength. To enhance the tribological and mechanical properties of unreinforced PEEK, short fibers are added to the matrix. In this study, Artificial Neural Networks (ANNs) and the Adaptive-Neural Fuzzy Inference System (ANFIS) are employed to predict the cutting forces during the machining operation of unreinforced and reinforced PEEK with30 v/v% carbon fiber and 30 v/v% glass fiber machining. The cutting speed, feed rate, material type, and cutting tools are defined as input parameters, and the cutting force is defined as the system output. The experimental results and test results that are predicted using the ANN and ANFIS models are compared in terms of the coefficient of determination ( R2) and mean absolute percentage error. The test results reveal that the ANFIS and ANN models provide good prediction accuracy and are convenient for predicting the cutting forces in the turning operation of PEEK.

2013 ◽  
Vol 3 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Golam Kabir ◽  
M. Ahsan Akhtar Hasin

An organization has to make the right decisions in time depending on demand information to enhance the commercial competitive advantage in a constantly fluctuating business environment. Therefore, estimating the demand quantity for the next period most likely appears to be crucial. The objective of the paper is to propose a new forecasting mechanism which is modeled by artificial intelligence approaches including the comparison of both artificial neural networks (ANN) and adaptive network-based fuzzy inference system (FIS) techniques to manage the fuzzy demand with incomplete information. Artificial neural networks has been applied as it is capable to model complex, nonlinear processes without having to assume the form of the relationship between input and output variables. Neuro-fuzzy systems also utilized to harness the power of the fuzzy logic and ANNs through utilizing the mathematical properties of ANNs in tuning rule-based fuzzy systems that approximate the way human’s process information. The effectiveness of the proposed approach to the demand forecasting issue is demonstrated for a 20/25 MVA Distribution Transformer from Energypac Engineering Limited (EEL), a leading power engineering company of Bangladesh.


Author(s):  
Mahmood Abbasi Layegh ◽  
Changiz Ghobadi ◽  
Javad Nourinia

This paper attempts at applying adaptive network-based fuzzy inference system (ANFIS) for analysis of the resonant frequency of a microstrip rectangular patch antenna with two equal size slots which are placed on the patch vertically. The resonant frequency is calculated as the position of slots is shifted to the right and left sides on the patch. As a result , the antenna resonates at more than one frequency . Commonly, machine algorithms based on artificial neural networks are employed to recognize the whole resonant frequencies. However ,they fail to estimate the resonant frequencies correctly as in some cases variations are not very sensible and the resonant frequencies overlap each other . It can be concluded that artificial neural networks could be replaced in such designs by the adaptive network-based fuzzy Inference system due to its high approximation capability and much faster convergence rate.


Sign in / Sign up

Export Citation Format

Share Document