Drive geometry construction method of machining features for aircraft structural part numerical control machining

Author(s):  
Wei Wang ◽  
Yingguang Li ◽  
Limin Tang
Author(s):  
Mandeep Dhanda ◽  
Aman Kukreja ◽  
SS Pande

This paper reports a novel method to generate adaptive spiral tool path for the CNC machining of complex sculptured surface represented in the form of cloud of points without the need for surface fitting. The algorithm initially uses uniform 2 D circular mesh-grid to compute the cutter location (CL) points by applying the tool inverse offset method (IOM). These CL points are refined adaptively till the surface form errors converge below the prescribed tolerance limits in both circumferential and radial directions. They are further refined to eliminate the redundancy in machining and generate optimum region wise tool path to minimize the tool lifts. The NC part programs generated by our algorithm were widely tested for different case studies using the commercial CNC simulator as well as by the actual machining trial. Finally, a comparative study was done between our developed system and the commercial CAM software. The results showed that our system is more efficient and robust in terms of the obtained surface quality, productivity, and memory requirement.


2014 ◽  
Vol 490-491 ◽  
pp. 288-293
Author(s):  
Tao Liu ◽  
Xia Qin Wang ◽  
Jun Wu ◽  
Yong Wei Wang

With the development of scroll technology, the requirements of more efficient and more accurate processing method for scroll compressor parts become more urgent. This paper proposes a method to improve the machining effect of scroll compressor. The approach is based on 3-point arc approximation method which divides combined profile of scroll wrap into subparagraph arcs that can be interpolated on CNC System. This approach simplifies the programming process and improves the curve fitting effect. The results indicate that the fitting error is in the predetermined range, and the interpolation points of cutter center track are significantly less than those based on CAD/CAM software. The method presented in this paper is of significance to the NC machining of novel precise scroll profile.


Author(s):  
Jie Huang ◽  
Xu Du ◽  
Li-Min Zhu

The acceleration/deceleration feedrate scheduling is one of the most important techniques in computer numerical control systems. Along with this technique, the bi-directional scanning technique is always employed. The bi-directional scanning technique consists of a backward scanning process followed by a forward scanning process. The two scanning processes in the conventional methods are executed in a serial manner by scanning through all the scheduling blocks one by one. Consequently, the feedrate scheduling will suffer from a heavy computational burden when there are massive blocks to be scanned, which deteriorates its real-time performance for computer numerical control machining. To alleviate the computational burden, a parallel acceleration/deceleration feedrate scheduling approach is proposed in this article. With this method, the scheduling blocks are splitted into several scheduling units and the feedrate for each of them is scheduled simultaneously. The feasibility of the proposed approach is validated through the feedrate scheduling for two widely used butterfly and helix paths. For a constructed example of feedrate scheduling, a significant acceleration ratio about 3.7 on a personal computer with a quad-core central processing unit is achieved.


Sign in / Sign up

Export Citation Format

Share Document