cam software
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 32)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
James Edward Bennett

<p>This thesis discusses the traditional use of (computer numerically controlled) CNC machining and the role of a designer to control the manipulation of (computer aided manufacturing) CAM software, CNC data and materials. The engaged designer has the capability to add qualities of digital tectonics onto a specified form through the process of working intimately with a CNC lathe. They experiment using abstract forms to find unique qualities that come from the cutting action of the tooling in a lathe. The designer takes on the role of the self-learner to become competent in the software, technology to apply complex textures and expressions.  The designer can capitalise on unforeseen events, adds the action of craft to this industrial production method, creates beauty and provokes an emotional connection. Understanding the potential in the design possibility is to accept the serendipitous influences that can be controlled and the inevitable moments that cannot.  The core of this research is to show how a designer claims authorship of their design at the making stage. They can define the margin of control and randomness, whether something has become too serendipitous, compromising the crafted form, or remained banal, repeating the precision machining, and releasing any character from the object. By finding the best design solution and replicating the same understanding a craftsperson has of their traditional tools. The designer observes, analyses, succeeds and fails, recognising the potential of their experimentation. Using Cross’s model of exploration, generation, evaluation and communication there is the strategy to see the unexpected, realise the potential and make it desirable. Learning the ability to manipulate digital surfaces and identify serendipitous qualities produced by the physical fingerprint of the machining process.  Opposing the machines’ engineering, expressing the marks of the tool on an object, the imprints behaving as fingerprints left on a surface, is a unique characteristic. Something that makes the end user want to experience, feel, move and use it every day. These surprising results may influence the future of how design is conducted with digital technologies and adding digital complexities inspired by traditional craft to design more interesting artefacts.</p>


2021 ◽  
Author(s):  
◽  
James Edward Bennett

<p>This thesis discusses the traditional use of (computer numerically controlled) CNC machining and the role of a designer to control the manipulation of (computer aided manufacturing) CAM software, CNC data and materials. The engaged designer has the capability to add qualities of digital tectonics onto a specified form through the process of working intimately with a CNC lathe. They experiment using abstract forms to find unique qualities that come from the cutting action of the tooling in a lathe. The designer takes on the role of the self-learner to become competent in the software, technology to apply complex textures and expressions.  The designer can capitalise on unforeseen events, adds the action of craft to this industrial production method, creates beauty and provokes an emotional connection. Understanding the potential in the design possibility is to accept the serendipitous influences that can be controlled and the inevitable moments that cannot.  The core of this research is to show how a designer claims authorship of their design at the making stage. They can define the margin of control and randomness, whether something has become too serendipitous, compromising the crafted form, or remained banal, repeating the precision machining, and releasing any character from the object. By finding the best design solution and replicating the same understanding a craftsperson has of their traditional tools. The designer observes, analyses, succeeds and fails, recognising the potential of their experimentation. Using Cross’s model of exploration, generation, evaluation and communication there is the strategy to see the unexpected, realise the potential and make it desirable. Learning the ability to manipulate digital surfaces and identify serendipitous qualities produced by the physical fingerprint of the machining process.  Opposing the machines’ engineering, expressing the marks of the tool on an object, the imprints behaving as fingerprints left on a surface, is a unique characteristic. Something that makes the end user want to experience, feel, move and use it every day. These surprising results may influence the future of how design is conducted with digital technologies and adding digital complexities inspired by traditional craft to design more interesting artefacts.</p>


2021 ◽  
Vol 41 (7) ◽  
pp. 640-644
Author(s):  
A. V. Shchekin ◽  
I. N. Tribushinin ◽  
V. P. Fomin
Keyword(s):  

2021 ◽  
Vol 56 (3) ◽  
pp. 405-418
Author(s):  
P.K. Fergiawan ◽  
P.W. Anggoro ◽  
Rifky Ismail ◽  
J. Jamari ◽  
A.P. Bayuseno

Clubfoot is an abnormal foot as a congenital disability in which one or both feet appear rotated inward and downward. In some cases, the foot and leg sizes may be smaller compared to each other. Accordingly, there is a need for customized shoes designed for clubfoot patients who has difficulty in wearing regular shoes to carry out their daily activities. This study examines using computer-aided reverse engineering system technology to design and manufacture customized boots with specific sizes and shapes. Reverse engineering with a handy scan 3D scanning tool with a tolerance of 0.001 mm was implemented to obtain 3D mesh data of the patient’s clubfoot (male with 65 years). The Curve Base Surface Modeling method provided 3D-CAD drawings of the insole and shoe, the last models, precisely and following the size and shape of the patient’s foot. This CAD data could be appropriately transferred to CNC machines and PowerMill CAM software to obtain patterns of insole and shoe-last from EVA foam rubber and wood. Both ways were well fitted with leather by a shoemaker into a pair of customized clubfoot boots. The field boot-wearing test used feedback from the clubfoot patient wear-testers to assess the functionality and acceptability of the boot products. In this way, the club foot patient can able to perceive wearing comfortably and perfectly. In the field boot-wearing test, the patient could walk at a speed of 83.1% -91.7% faster (2 - 5 minutes/foot) than that when the patient wears the old boot design model. Significantly, the present approach may add knowledge theoretically and practically to use CARE system-based technology in treating clubfoot patients with the need for custom shoes.


2021 ◽  
pp. 47-51
Author(s):  
Peter Tirpak ◽  
Peter Michalik ◽  
Jozef Macej

The article deals with the use of CAD / CAM software Autodesk Inventor in the production of the shaft. CAM programming is very important in the field of engineering because it speeds up the process of manufacturing parts and enables the production of their complex shapes. The article describes the programming of turning, milling, drilling and threading of the shaft. The programming was followed by the production of the shaft. The manufactured shaft met the dimensions according to the technical documentation and was subsequently used in the assembly.


2021 ◽  
Author(s):  
Qiang (John) Sun

This thesis presents a newly developed system for simulation and control of reconfigurable machines and applications in the polishing process. A software package is developed that consists of the Varying Topology Simulation and Control System (VT-Sim) as well as the Polishing CAM (P-CAM) software system. VT-Sim can simulate and control reconfigurable machines of serial or tree structures. It is developed based on mechatronic modules, each of which has a graphic user interface that can be connected to a physical module. The selected modules are linked through a graph-based topology design platform to generate an assembled system together with the equations for simulation and control. P-CAM can simulate and generate CNC codes for the polishing process. The roughness of the polished parts is simulated for selected polishing parameters. Once satisfied, polishing tool paths can be generated and visualized.


2021 ◽  
Author(s):  
Qiang (John) Sun

This thesis presents a newly developed system for simulation and control of reconfigurable machines and applications in the polishing process. A software package is developed that consists of the Varying Topology Simulation and Control System (VT-Sim) as well as the Polishing CAM (P-CAM) software system. VT-Sim can simulate and control reconfigurable machines of serial or tree structures. It is developed based on mechatronic modules, each of which has a graphic user interface that can be connected to a physical module. The selected modules are linked through a graph-based topology design platform to generate an assembled system together with the equations for simulation and control. P-CAM can simulate and generate CNC codes for the polishing process. The roughness of the polished parts is simulated for selected polishing parameters. Once satisfied, polishing tool paths can be generated and visualized.


Sign in / Sign up

Export Citation Format

Share Document