Effects of abrasive types on the surface integrity of abrasive-flow-machined surfaces

Author(s):  
Kursad Gov ◽  
Omer Eyercioglu

In this article, the effect of abrasive types on the abrasive flow machining process was investigated. Four groups of abrasive media were prepared with different types of abrasives: SiC, AL2O3, B4C and Garnet. An experimental study was performed on DIN 1.2379 tool steel. The specimens were cut using wire electrical discharge machining and finished with the abrasive flow machining process. The results show that the white layer that formed during wire electrical discharge machining was successfully removed by abrasive flow machining in a few cycles. Although the surface roughness improves with similar trends for all media groups, the results show that the media prepared with B4C and SiC have more surface improvement than the Al2O3 and Garnet ones. The resulting average surface roughness (Ra) values are comparable to the surface quality of those obtained from lapping and super-finishing. The material removal is directly related to the hardness of the abrasive.

2019 ◽  
Vol 12 (2) ◽  
pp. 107
Author(s):  
Fipka Bisono ◽  
Dhika Aditya P.

Wire electrical discharge machining(WEDM) banyak digunakan untuk proses pembuatan punch and dies. Dimana material yang digunakan memiliki tingkat kekerasan yang sangat tinggi. Parameter pemesinan yang kurang tepat dapat menyebabkan hasil pemotongan yang tidak optimal. Penelitian ini dilakukan untuk mengoptimalkan beberapa karakteristik hasil proses pemesinan secara serentak dengan cara mevariasikan variabel-variabel proses pemesinan WEDM. Karakteristik hasil proses yang diteliti antara lain adalah lebar pemotongan, kekasaran permukaan, dan tebal lapisan white layer. Proses pemesinan dilakukan pada material tool steel SKD 11. Arc on time, on time, open voltage dan servo voltage merupakan variabel-variabel proses yang akan divariasikan. Rancangan percobaan dilakukan menggunakan metode Taguchi dengan matriks ortogonal L18(21x33) dengan dua kali replikasi. Sedangkan langkah yang digunakan untuk mengoptimasi karakteristik hasil proses pemesinan yang diteliti secara serentak adalah menggunakan metode grey relational analysis (GRA). Lebar pemotongan, kekasaran permukaan dan tebal lapisan white layer memiliki performance characteristics “smaller-is-better.” Hasil dari penelitian menunjukkan nilai variabel-variabel proses pemesinan yang menghasilkan kualitas karakteristik yang paling optimum adalah sebagai berikut: arc on time (1A), on time (4?s), open voltage (70V), dan servo voltage (40V). Dengan persentase kontribusi variabel proses dari yang terbesar berturut-turut adalah on time (65,09%), open voltage (11,35%), arc on time (7,71%), dan servo voltage (5,61%). Wire electrical discharge machining (WEDM) process is commonly used to make punch and dies. WEDM services are typically used to cut hard metals. Inappropriate machining parameters can cause suboptimal cutting results. This research was conducted to optimize several characteristics of the machining process simultaneously by varying WEDM machining process variables. Performance characteristics of the WEDM process include the kerf, surface roughness and thickness of the white layer. The machining process is carried out on SKD 11 tool steel material.  Arc on time, on time, open voltage and servo voltage are process variables that will be varied. The experimental matrix design was carried out using the Taguchi method L18 (21x33) orthogonal array with two replications. Then to optimize the performance characteristics of the machining process simultaneously is using the Gray Relational Analysis (GRA) method. Performance characteristics of kerf, surface roughness, and thickness of the white layer is "smaller-is-better". The results of the experiment indicate the value of the machining process variables that produce the most optimum quality performance characteristics are as follows: arc on time (1A), on time (4?s), open voltage (70V), and servo voltage (40V). And the percentage of contribution of the process variables from the largest to smallest are as follows: on time (65,09%), open voltage (11,35%), arc on time (7,71%), and servo voltage (5,61%).


Author(s):  
Ze Yu ◽  
Dunwen Zuo ◽  
Yuli Sun ◽  
Guohua Li ◽  
Xuemei Chen ◽  
...  

To simultaneously optimize the surface quality and machining efficiency of the electrical discharge machining (EDM) processes used to produce titanium alloy quadrilateral group small hole parts, a combined “EDM + AFM” machining technology is proposed in this paper as an efficient and high-quality machining approach. In the proposed method, TC4 titanium alloy is first machined using the EDM process with graphite electrodes and the abrasive flow machining (AFM) process is then used to finish the machined surface. The effects of various electrical parameters on EDM-derived surface quality and improvements in EDM-derived quality under the application of AFM were assessed and, using the final surface roughness as a constraint condition, the effects of various combinations of EDM and “EDM + AFM” on efficiency were studied. The results revealed that the thickness and surface roughness of the superficial recast layer of the TC4 titanium alloy increase with both current and pulse width; in particular, increasing these parameters can increase the surface roughness by two to three grades. Following AFM, the alloy has a more uniform hardness distribution and the surface stress state changes from tensile to compressive stress, indicating that the combined “EDM + AFM” machining scheme can significantly enhance the surface quality of EDM-produced titanium alloy quadrilateral small group holes. The combined scheme achieves a balancing point beyond which increasing the roughness or the number of machining holes enhances either the machining efficiency or the machining surface quality. In the case of typical titanium alloy quadrilateral group small hole parts, the combined machining process can improve the finishing efficiency and total machining efficiency by 71.2% and 25.36%, respectively.


Mechanik ◽  
2018 ◽  
Vol 91 (10) ◽  
pp. 915-917
Author(s):  
Jan Burek ◽  
Robert Babiarz ◽  
Marcin Płodzień ◽  
Jarosław Buk

The article presents the effect of electrode infeed in finishing machining of disk fir tree slots made of Inconel 718 alloy on shape accuracy and surface roughness in WEDM (wire electrical discharge machining).


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 530 ◽  
Author(s):  
Rakesh Chaudhari ◽  
Jay J. Vora ◽  
Vivek Patel ◽  
L. N. López de Lacalle ◽  
D. M. Parikh

Shape-memory alloys such as nitinol are gaining popularity as advanced materials in the aerospace, medical, and automobile sectors. However, nitinol is a difficult-to-cut material because of its versatile specific properties such as the shape-memory effect, superelasticity, high specific strength, high wear and corrosion resistance, and severe strain hardening. Anunconventional machining process like wire-electrical-discharge-machining (WEDM) can be effectively and efficiently used for the machining of such alloys, although the WEDM-induced surface integrity of nitinol hassignificant impact on material performance. Therefore, this work investigated the surface integrity of WEDM-processed nitinol samples using digital microscopy imaging, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) analysis. Three-dimensional analysis of the surfaces was carried out in two different patterns (along the periphery and the vertical plane of the machined surface) andrevealed that surface roughness was maximalat the point where the surface was largely exposed to the WEDM dielectric fluid. To attain the desired surface roughness, appropriate discharge energy is required that, in turn, requires the appropriate parameter settings of the WEDM process. Different SEM image analyses showed a reduction in microcracks and pores, and in globule-density size at optimized parameters. EDX analysis revealed the absence of wire material on the machined surface


2008 ◽  
Vol 53-54 ◽  
pp. 387-392 ◽  
Author(s):  
Tong Wang ◽  
Yu Mei Lu ◽  
Shu Qiang Xie ◽  
Shuang Shuang Hao ◽  
H. Zhao

Utilizing gas as the dielectric instead of dielectric liquid has enabled the development of dry wire electrical discharge machining (dry WEDM) technology for finishing cut. Experiment results showed that Low-Speed WEDM (LS-WEDM) in gas offers advantages such as better straightness, and shorter discharge gap. This paper studies on influence of different gas dielectrics, wire winding speed and pulse duration on the WEDMed surface quality (discharge gap, straightness, surface roughness, removal rate) in finishing. New attempt of applying dry WEDM as the 4th cut had been proved feasible in improving conventional multiple cut surface quality of LS-WEDM.


Sign in / Sign up

Export Citation Format

Share Document