scholarly journals Surface Analysis of Wire-Electrical-Discharge-Machining-Processed Shape-Memory Alloys

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 530 ◽  
Author(s):  
Rakesh Chaudhari ◽  
Jay J. Vora ◽  
Vivek Patel ◽  
L. N. López de Lacalle ◽  
D. M. Parikh

Shape-memory alloys such as nitinol are gaining popularity as advanced materials in the aerospace, medical, and automobile sectors. However, nitinol is a difficult-to-cut material because of its versatile specific properties such as the shape-memory effect, superelasticity, high specific strength, high wear and corrosion resistance, and severe strain hardening. Anunconventional machining process like wire-electrical-discharge-machining (WEDM) can be effectively and efficiently used for the machining of such alloys, although the WEDM-induced surface integrity of nitinol hassignificant impact on material performance. Therefore, this work investigated the surface integrity of WEDM-processed nitinol samples using digital microscopy imaging, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) analysis. Three-dimensional analysis of the surfaces was carried out in two different patterns (along the periphery and the vertical plane of the machined surface) andrevealed that surface roughness was maximalat the point where the surface was largely exposed to the WEDM dielectric fluid. To attain the desired surface roughness, appropriate discharge energy is required that, in turn, requires the appropriate parameter settings of the WEDM process. Different SEM image analyses showed a reduction in microcracks and pores, and in globule-density size at optimized parameters. EDX analysis revealed the absence of wire material on the machined surface

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2533
Author(s):  
Rakesh Chaudhari ◽  
Jay Vora ◽  
L.N.López de Lacalle ◽  
Sakshum Khanna ◽  
Vivek K. Patel ◽  
...  

In the current scenario of manufacturing competitiveness, it is a requirement that new technologies are implemented in order to overcome the challenges of achieving component accuracy, high quality, acceptable surface finish, an increase in the production rate, and enhanced product life with a reduced environmental impact. Along with these conventional challenges, the machining of newly developed smart materials, such as shape memory alloys, also require inputs of intelligent machining strategies. Wire electrical discharge machining (WEDM) is one of the non-traditional machining methods which is independent of the mechanical properties of the work sample and is best suited for machining nitinol shape memory alloys. Nano powder-mixed dielectric fluid for the WEDM process is one of the ways of improving the process capabilities. In the current study, Taguchi’s L16 orthogonal array was implemented to perform the experiments. Current, pulse-on time, pulse-off time, and nano-graphene powder concentration were selected as input process parameters, with material removal rate (MRR) and surface roughness (SR) as output machining characteristics for investigations. The heat transfer search (HTS) algorithm was implemented for obtaining optimal combinations of input parameters for MRR and SR. Single objective optimization showed a maximum MRR of 1.55 mm3/s, and minimum SR of 2.68 µm. The Pareto curve was generated which gives the optimal non-dominant solutions.


Author(s):  
Sagil James ◽  
Sharadkumar Kakadiya

Shape Memory Alloys are smart materials that tend to remember and return to its original shape when subjected to deformation. These materials find numerous applications in robotics, automotive and biomedical industries. Micromachining of SMAs is often a considerable challenge using conventional machining processes. Micro-Electrical Discharge Machining is a combination of thermal and electrical processes, which can machine any electrically conductive material at micron scale independent of its hardness. It employs dielectric medium such as hydrocarbon oils, deionized water, and kerosene. Using liquid dielectrics has adverse effects on the machined surface causing cracking, white layer deposition, and irregular surface finish. These limitations can be minimized by using a dry dielectric medium such as air or nitrogen gas. This research involves the experimental study of micromachining of Shape Memory Alloys using dry Micro-Electrical Discharge Machining process. The study considers the effect of critical process parameters including discharge voltage and discharge current on the material removal rate and the tool wear rate. A comparison study is performed between the Micro-Electrical Discharge Machining process with using the liquid as well as air as the dielectric medium. In this study, microcavities are successfully machined on shape memory alloys using dry Micro-Electrical Discharge Machining process. The study found that the dry Micro-Electrical Discharge Machining produces a comparatively better surface finish, has lower tool wear and lesser material removal rate compared to the process using the liquid as the dielectric medium. The results of this research could extend the industrial applications of Micro Electrical Discharge Machining processes.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5943
Author(s):  
Arminder Singh Walia ◽  
Vineet Srivastava ◽  
Mayank Garg ◽  
Nalin Somani ◽  
Nitin Kumar Gupta ◽  
...  

In electrical discharge machining (EDM), the machined surface quality can be affected by the excessive temperature generation during the machining process. To achieve a longer life of the finished part, the machined surface quality plays a key role in maintaining its overall integrity. Surface roughness is an important quality evaluation of a material’s surface that has considerable influence on mechanical performance of the material. Herein, a sintered cermet tooltip with 75% copper and 25% titanium carbide was used as tool electrode for processing H13 steel. The experiments have been performed to investigate the effects of EDM parameters on the machined surface roughness. The findings show that, as the pulse current, pulse length, and pulse interval are increased, the surface roughness tends to rise. The most significant determinant for surface roughness was found to be pulse current. A semi-empirical surface roughness model was created using the characteristics of the EDM technique. Buckingham’s theorem was used to develop a semi-empirical surface roughness prediction model. The semi-empirical model’s predictions were in good agreement with the experimental studies, and the built empirical model based on physical features of the cermet tooltip was tested using dimensional analysis.


Mechanik ◽  
2018 ◽  
Vol 91 (10) ◽  
pp. 915-917
Author(s):  
Jan Burek ◽  
Robert Babiarz ◽  
Marcin Płodzień ◽  
Jarosław Buk

The article presents the effect of electrode infeed in finishing machining of disk fir tree slots made of Inconel 718 alloy on shape accuracy and surface roughness in WEDM (wire electrical discharge machining).


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Md. Ashikur Rahman Khan ◽  
M. M. Rahman

Electrical discharge machining (EDM) produces complex shapes and permits high-precision machining of any hard or difficult-to-cut materials. The performance characteristics such as surface roughness and microstructure of the machined face are influenced by numerous parameters. The selection of parameters becomes complicated. Thus, the surface roughness (Ra) and microstructure of the machined surface in EDM on Grade 6 titanium alloy are studied is this study. The experimental work is performed using copper as electrode material. The polarity of the electrode is maintained as negative. The process parameters taken into account in this study are peak current (Ip), pulse-on time (Ton), pulse-off time (Toff), and servo-voltage (Sv). A smooth surface finish is found at low pulse current, small on-time and high off-time. The servo-voltage affects the roughness diversely however, a finish surface is found at 80 V Sv. Craters, cracks and globules of debris are appeared in the microstructure of the machined part. The size and degree of craters as well as cracks increase with increasing in energy level. Low discharge energy yields an even surface. This approach helps in selecting proper process parameters resulting in economic EDM machining. 


2019 ◽  
Vol 12 (2) ◽  
pp. 107
Author(s):  
Fipka Bisono ◽  
Dhika Aditya P.

Wire electrical discharge machining(WEDM) banyak digunakan untuk proses pembuatan punch and dies. Dimana material yang digunakan memiliki tingkat kekerasan yang sangat tinggi. Parameter pemesinan yang kurang tepat dapat menyebabkan hasil pemotongan yang tidak optimal. Penelitian ini dilakukan untuk mengoptimalkan beberapa karakteristik hasil proses pemesinan secara serentak dengan cara mevariasikan variabel-variabel proses pemesinan WEDM. Karakteristik hasil proses yang diteliti antara lain adalah lebar pemotongan, kekasaran permukaan, dan tebal lapisan white layer. Proses pemesinan dilakukan pada material tool steel SKD 11. Arc on time, on time, open voltage dan servo voltage merupakan variabel-variabel proses yang akan divariasikan. Rancangan percobaan dilakukan menggunakan metode Taguchi dengan matriks ortogonal L18(21x33) dengan dua kali replikasi. Sedangkan langkah yang digunakan untuk mengoptimasi karakteristik hasil proses pemesinan yang diteliti secara serentak adalah menggunakan metode grey relational analysis (GRA). Lebar pemotongan, kekasaran permukaan dan tebal lapisan white layer memiliki performance characteristics “smaller-is-better.” Hasil dari penelitian menunjukkan nilai variabel-variabel proses pemesinan yang menghasilkan kualitas karakteristik yang paling optimum adalah sebagai berikut: arc on time (1A), on time (4?s), open voltage (70V), dan servo voltage (40V). Dengan persentase kontribusi variabel proses dari yang terbesar berturut-turut adalah on time (65,09%), open voltage (11,35%), arc on time (7,71%), dan servo voltage (5,61%). Wire electrical discharge machining (WEDM) process is commonly used to make punch and dies. WEDM services are typically used to cut hard metals. Inappropriate machining parameters can cause suboptimal cutting results. This research was conducted to optimize several characteristics of the machining process simultaneously by varying WEDM machining process variables. Performance characteristics of the WEDM process include the kerf, surface roughness and thickness of the white layer. The machining process is carried out on SKD 11 tool steel material.  Arc on time, on time, open voltage and servo voltage are process variables that will be varied. The experimental matrix design was carried out using the Taguchi method L18 (21x33) orthogonal array with two replications. Then to optimize the performance characteristics of the machining process simultaneously is using the Gray Relational Analysis (GRA) method. Performance characteristics of kerf, surface roughness, and thickness of the white layer is "smaller-is-better". The results of the experiment indicate the value of the machining process variables that produce the most optimum quality performance characteristics are as follows: arc on time (1A), on time (4?s), open voltage (70V), and servo voltage (40V). And the percentage of contribution of the process variables from the largest to smallest are as follows: on time (65,09%), open voltage (11,35%), arc on time (7,71%), and servo voltage (5,61%).


Author(s):  
Kursad Gov ◽  
Omer Eyercioglu

In this article, the effect of abrasive types on the abrasive flow machining process was investigated. Four groups of abrasive media were prepared with different types of abrasives: SiC, AL2O3, B4C and Garnet. An experimental study was performed on DIN 1.2379 tool steel. The specimens were cut using wire electrical discharge machining and finished with the abrasive flow machining process. The results show that the white layer that formed during wire electrical discharge machining was successfully removed by abrasive flow machining in a few cycles. Although the surface roughness improves with similar trends for all media groups, the results show that the media prepared with B4C and SiC have more surface improvement than the Al2O3 and Garnet ones. The resulting average surface roughness (Ra) values are comparable to the surface quality of those obtained from lapping and super-finishing. The material removal is directly related to the hardness of the abrasive.


Author(s):  
Gangadharudu Talla ◽  
Soumya Gangopadhyay ◽  
CK Biswas

In recent times, nickel-based super alloys are widely utilized in aviation, processing, and marine industries owing to their supreme ability to retain the mechanical properties at elevated temperature in combination with remarkable resistance to corrosion. Some of the properties of these alloys such as low thermal conductivity, strain hardening tendency, chemical affinity, and presence of hard and abrasives phases in the microstructure render these materials very difficult-to-cut using conventional machining processes. In this work, an experimental setup was developed and integrated with the existing electrical discharge machining system for carrying out powder-mixed electrical discharge machining process for Inconel 625. The experiments were planned and conducted by varying five different variables, that is, powder concentration, peak current, pulse-on time, duty cycle, and gap voltage based on the central composite design of response surface methodology. Effects of these parameters along with powder concentration were investigated on various surface integrity aspects including surface morphology, surface roughness, surface microhardness, change in the composition of the machined surface, and residual stress. Results clearly indicated that addition of powder to dielectric has significantly improved surface integrity compared to pure dielectric. Among the powders used, silicon has resulted in highest microhardness, that is, almost 14% more than graphite. Lowest surface roughness (approximately 50% less than pure kerosene) and least residual stress were obtained using silicon powder (approximately 8% less than graphite-mixed dielectric). Relative content of nickel was reduced at the expense of Nb and Mo after addition of powders like aluminum and graphite in dielectric during electrical discharge machining.


Sign in / Sign up

Export Citation Format

Share Document