A reduced mesh movement method based on pseudo elastic solid for fluid–structure interaction

Author(s):  
Jize Zhong ◽  
Zili Xu

A reduced mesh movement method based on pseudo elastic solid is developed and applied in fluid–structure interaction problems in this paper. The flow mesh domain is assumed to be a pseudo elastic solid. The vibration equation for the structure and the pseudo elastic solid together is derived by applying the displacement continuity condition on the fluid–structure interface. Considering that the actual fluid–structure coupled vibration for structures often appears to be associated with low-order modes, the nodal displacements for the structure and the flow mesh can be computed using the modal superposition of a few low-order modes. Coupled fluid–structure computations are performed for flutter problems of a beam and wing 445.6 using the present method. The calculated results are consistent with the data reported in other references. The computing time is reduced by 65.5% for the beam flutter and 54.8% for the wing flutter compared with the pre-existing elastic solid method.

Author(s):  
Jize Zhong ◽  
Zili Xu

In this paper, a modal approach for the fast calculation of flow mesh deformation around a wing is developed based on the elastic solid method of dynamic mesh. The flow mesh domain is assumed to be a pseudo elastic solid. The displacement of the wing and the pseudo elastic solid is continuous at the fluid structure interface. Considering the condition of displacement continuity, the governing equation for the vibration of the wing with the pseudo elastic solid together is derived. The frequencies and mode shapes of the wing and the pseudo elastic solid are computed. Then the nodal displacements for the wing and the flow mesh are computed using modal superposition. The flutter boundary of the AGARD Wing 445.6 is predicted using the present modal approach by considering the first four modes of the wing. The calculated results compare well with the experimental data. The computing time is reduced by 54.8% compared with the pre-existing elastic solid method.


Author(s):  
A. Castorrini ◽  
V. F. Barnabei ◽  
A. Corsini ◽  
F. Rispoli

Abstract Additive manufacturing represents a new frontier in the design and production of rotor machines. This technology drives the engineering research framework to new possibilities of design and testing of new prototypes, reducing costs and time. On the other hand, the fast additive manufacturing implies the use of plastic and light materials (as PLA or ABS), often including a certain level of anisotropy due to the layered deposition. These two aspects are critical, because the aero-elastic coupling and flow induced vibrations are not negligible for high aspect ratio rotors. In this work, we investigate the aeroelastic response of a small sample fan blade, printed using PLA material. Scope of the work is to study both the structure and flow field dynamics, where strong coupling is considered on the simulation. We test the blade in two operating points, to see the aero-mechanical dynamics of the system in stall and normal operating condition. The computational fluid-structure interaction (FSI) technique is applied to simulate the coupled dynamics. The FSI solver is developed on the base of the finite element stabilized formulations proposed by Tezduyar et al. We use the ALE formulation of RBVMS-SUPS equations for the aerodynamics, the non-linear elasticity is solved with the Updated Lagrangian formulation of the equations of motion for the elastic solid. The strong coupling is made with a block-iterative algorithm, including the Jacobian based stiffness method for the mesh motion.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Hisham Elkenani ◽  
Essam Al-Bahkali ◽  
Mhamed Souli

The aim of this study is to present a reliable computational scheme to serve in pulse wave velocity (PWV) assessment in large arteries. Clinicians considered it as an indication of human blood vessels’ stiffness. The simulation of PWV was conducted using a 3D elastic tube representing an artery. The constitutive material model specific for vascular applications was applied to the tube material. The fluid was defined with an equation of state representing the blood material. The onset of a velocity pulse was applied at the tube inlet to produce wave propagation. The Coupled Eulerian-Lagrangian (CEL) modeling technique with fluid structure interaction (FSI) was implemented. The scaling of sound speed and its effect on results and computing time is discussed and concluded that a value of 60 m/s was suitable for simulating vascular biomechanical problems. Two methods were used: foot-to-foot measurement of velocity waveforms and slope of the regression line of the wall radial deflection wave peaks throughout a contour plot. Both methods showed coincident results. Results were approximately 6% less than those calculated from the Moens-Korteweg equation. The proposed method was able to describe the increase in the stiffness of the walls of large human arteries via the PWV estimates.


Author(s):  
Tolotra Emerry Rajaomazava ◽  
Mustapha Benaouicha ◽  
Jacques-Andre´ Astolfi

The influence of numerical schemes for solving coupled problem in fluid-structure interaction is addressed. A non-linear Burgers equation in a bounded domain with moving interface is solved by finite element method (FEM). The implicit and explicit coupling algorithms are studied with interface equation solved at outside then inside of Newton iterative procedure (referred to as implicit-outer, implicit-inner, explicit and semi-implicit schemes respectively). Iteration numbers and computing time are compared for each algorithm. The interface position and energy conservation condition at the interface are discussed.


On the basis of a variational principle, a mixed finite element approach is developed to describe the linear dynamics of coupled fluid–structure interactions. The variables of acceleration in the elastic solid and pressure in the fluid are adopted as the arguments of the variational principle. These are chosen since they directly relate to many practical fluid–structure interaction dynamic problems involving free surface disturbances, e. g. a dam-water system, a fuel cell in an aircraft, etc. Matrix equations describing the motions are presented and four methods of solution discussed, each simplifying and approximating the matrix equations for easier application to solve various types of engineering problems. This is demonstrated by analysing a selection of fluid–structure interaction problems of practical interest. The examples illustrate the general principle and application of the described functional approach without need to resort to more complex dynamic problems which can be analysed in a similar manner.


Sign in / Sign up

Export Citation Format

Share Document