Evaluation of the main operating parameters of a homogeneous charge compression ignition engine for performance optimization

Author(s):  
Mostafa Mohebbi ◽  
Azhar Abdul Aziz ◽  
Vahid Hosseini ◽  
Mostafa Ramzannezhad ◽  
Rouzbeh Shafaghat

Homogeneous charge compression ignition engines require a smart control system to regulate the input quantities of the engine in various operational conditions. Achieving an optimum combustion needs an appropriate system response for different engine loads and speeds according to the power acquired from the engine, as well as the amounts of emissions present in the exhaust. Therefore, performing a set of experimental tests together with numerical simulations in a wide range of conditions facilitates calibration of the input parameters of the engine. In this study, the effects of the thermodynamic parameters and the thermokinetic parameters on the engine output in the preliminary design stage were obtained at different speeds to determine the optimum exhaust emissions, the optimum combustion timing and the ranges of misfiring and knock, using multiple-zone thermodynamic modelling. On the assumption that the simulation cycle is closed, the probability density function was used to determine the initial conditions for the temperature and the residual gas from the previous cycle mass distribution in each area inside the cylinder. The results obtained proved that the kinetic properties of the mixture due to the effects of the the air-to-fuel ratio, the percentage of exhaust gas recirculation and the percentage of reformer gas have dominant effects on the output in comparison with the thermodynamic parameters such as the intake pressure and the intake temperature. At low speeds, exhaust gas recirculation retards combustion and delays engine knock. At higher engine speeds, the reformer gas advances combustion and improves misfiring.

2012 ◽  
Vol 13 (5) ◽  
pp. 429-447 ◽  
Author(s):  
Mathieu André ◽  
Bruno Walter ◽  
Gilles Bruneaux ◽  
Fabrice Foucher ◽  
Christine Mounaïm–Rousselle

A single-cylinder diesel engine was used to investigate the potential of exhaust gas recirculation dilution stratification as a control technique for homogeneous charge compression ignition combustion with early direct injections. Experimental studies on both all-metal and optically accessible engines were performed to understand the processes involved when exhaust gas recirculation is introduced separately in the intake ports. Laser-induced fluorescence diagnostics were carried out in the optical engine in order to provide fuel and exhaust gas recirculation distributions. The results indicate that depending on the intake configuration, the exhaust gas recirculation stratification can be maintained until late timings corresponding to the combustion event, leading to decreased maxima of heat-release rates, as well as decreased combustion noise levels. This result suggests that exhaust gas recirculation stratification may be used as a control parameter for combustion speed and therefore may contribute to the extension of the homogeneous charge compression ignition operating range. However, although exhaust gas recirculation stratification appears to be an interesting new control technique for homogeneous charge compression ignition combustion, its effect on the combustion was shown to be very sensitive to parameters such as the intake system configuration or the exhaust gas recirculation composition, showing that industrial use of this control technique requires further understanding of the physical phenomena involved.


Sign in / Sign up

Export Citation Format

Share Document