Modeling, control design, and influence analysis of catapult-assisted take-off process for carrier-based aircrafts

Author(s):  
Ziyang Zhen ◽  
Ju Jiang ◽  
Xinhua Wang ◽  
Kangwei Li

This paper addresses the problems of modeling, control design, and influence analysis of the steam catapult-assisted take-off process of the carrier-based aircrafts. The mathematical models of the carrier-based aircraft, steam catapult, landing gears, and the environmental factors including deck motion and bow airflow have been established to express the aircraft dynamics in the take-off process. An engineering method based automatic flight control system has been designed, which is divided into the longitudinal channel and lateral channel. The influences of the preset control surface, ship deck motion, ship bow airflow, and automatic flight control system system are tested by a series of simulations. The simulation results show that the elevator angle preset is necessary in the stage of accelerated running on the ship deck and the deck motion is the most important factor for safe take-off, while the ship bow airflow is beneficial for climbing up of the aircraft. The automatic flight control system gives the guarantee of safety and performance in the take-off process of the carrier-based aircraft.

2019 ◽  
Vol 2019.72 (0) ◽  
pp. C23
Author(s):  
Kazuki KISHIWADA ◽  
Koichi YONEMOTO ◽  
Takahiro FUJIKAWA ◽  
Kento SHIRAKATA ◽  
Takahiro MATSUKAMI

2012 ◽  
Author(s):  
Zairil A. Zaludin

Jika kerosakan berlaku kepada permukaan kawalan penerbangan, tujuan “Sistem Pereka Bentuk Kawalan Penerbangan” ialah untuk membahagi dan menyelaras usaha kawalan antara permukaan-permukaan kawalan yang masih aktif untuk tujuan mengekalkan mutu penerbangan yang diingini. Tugas utama ‘Sistem Pereka Bentuk Kawalan Penerbangan’ adalah untuk menyelaraskan unit kawalan semasa kerosakan berlaku ataupun menukar unit kawalan kepada sistem kawalan yang lebih sesuai untuk tujuan membaiki kerosakan tersebut. Dalam kertas ini, cara yang kedua dipertimbangkan. Reka bentuk “Sistem Keselamatan Kegagalan Kawalan” untuk pesawat hipersonik dibentangkan. Cara tersebut adalah berdasarkan cara penetapan nilai eigen dan teori pengatur kuadratik linear. Terdapat tiga masukan kawalan ke pesawat tersebut. Jika cara yang dibentangkan di dalam kertas ini digunakan, keputusan analisis yang dibentangkan menunjukkan bahawa sistem kawalan penerbangan untuk pesawat ini boleh direka bentuk sehingga kestabilan pesawat tersebut dicapai semula apabila salah satu ataupun gabungan permukaan kawalan gagal berfungsi pada masa yang sama. Didapati juga gerakan tabii pesawat yang mengalami kerosakan dapat dibaik pulih seperti sebelum kerosakan berlaku. Satu contoh disertakan dalam kertas ini menggunakan model matematik pesawat hipersonik. Kata kunci: dinamik penerbangan; penerbangan hipersonik; kawalan optimal; penetapan nilai eigen; Teori LQR In the event of a control surface failure, the purpose of a reconfigurable flight control system is to redistribute and coordinate the control effort among the aircraft’s remaining effective surfaces such that satisfactory flight performance is retained. A major task in control reconfiguration deals with adjusting the controller gains on-line or switching to a different control law to compensate for the failure. In this paper, the former option is considered. The design of a Control Failure Survival System (CFSS) for a hypersonic transport (HST) aircraft is presented. The method is based on eigenvalue assignment which was developed using Linear Quadratic Regulator theory. There are three control inputs available on board the HST; the change in the flaps deflection, the change in the propulsion diffuser area ratio and the change in the total temperature across combustor. Using the method discussed in this paper, the results showed that it was possible to reconfigure the flight control system such that the aircraft stability is regained when either a single or a combination of, control failures occurred simultaneously. In addition, the natural motion characteristics (i.e short period, phugoid and height motion) of the aircraft before the failure occurred are conserved and the transient response of the aircraft state variables after failure was almost the same as before failure occurred. An example is included in this paper using the mathematical model of the longitudinal motion of the HST. Key words: Aircraft dynamics; hypersonic flight; optimal control; eigen value assignment; LQR Theory


Sign in / Sign up

Export Citation Format

Share Document