Reduced-order models for radiative heat transfer of hypersonic vehicles

Author(s):  
Xiaoxuan Yan ◽  
Jinglong Han ◽  
Haiwei Yun ◽  
Xiaomao Chen

Aerothermoelastic analysis of hypersonic vehicles is a complex multidisciplinary coupling problem. Thus, accurate modeling of varying disciplines with low computational cost is necessary. This work developed a tractable approach-based reduced-order modeling technology to solve the radiative thermal transfer problem in a hypersonic simulation. A method that combines proper orthogonal decomposition and unassembled discrete empirical interpolation method is developed to construct the reduced-order modeling. First, high-dimensional original systems are projected on the optional basis generated by proper orthogonal decomposition, and the nonlinear term is further approximated by unassembled discrete empirical interpolation method. Then, a numerical integration method for the solution of the reduced system of nonlinear differential equations is provided. Case studies that use a classical hypersonic control surface model, in which the time history and spatial distribution of the thermal load are known a priori, are conducted to validate the accuracy and efficiency of the reduced-order modeling methodology and to assess the robustness of the reduced-order modeling for thermal solution. Results indicate the ability of reduced-order modeling to reduce the nonlinear system size with reasonable accuracy.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
John Paul Roop

We introduce the variational multiscale (VMS) stabilization for the reduced-order modeling of incompressible flows. It is well known that the proper orthogonal decomposition (POD) technique in reduced-order modeling experiences numerical instability when applied to complex flow problems. In this case a POD discretization naturally separates out structures which corresponding to the energy cascade on large and small scales, in order, a VMS approach is natural. In this paper, we provide the mathematical background necessary for implementing VMS to a POD-Galerkin model of a generalized Oseen problem. We provide theoretical evidence which indicates the consistency of utilizing a VMS approach in the stabilization of reduced order flows. In addition we provide numerical experiments indicating that VMS improves fidelity in reproducing the qualitative properties of the flow.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Ibrahim Yilmaz ◽  
Ece Ayli ◽  
Selin Aradag

Simulations of supersonic turbulent flow over an open rectangular cavity are performed to observe the effects of length to depth ratio (L/D) of the cavity on the flow structure. Two-dimensional compressible time-dependent Reynolds-averaged Navier-Stokes equations with k-ωturbulence model are solved. A reduced order modeling approach, Proper Orthogonal Decomposition (POD) method, is used to further analyze the flow. Results are obtained for cavities with severalL/Dratios at a Mach number of 1.5. Mostly, sound pressure levels (SPL) are used for comparison. After a reduced order modeling approach, the number of modes necessary to represent the systems is observed for each case. The necessary minimum number of modes to define the system increases as the flow becomes more complex with the increase in theL/Dratio. This study provides a basis for the control of flow over supersonic open cavities by providing a reduced order model for flow control, and it also gives an insight to cavity flow physics by comparing several simulation results with different length to depth ratios.


Sign in / Sign up

Export Citation Format

Share Document