Biomechanical analysis of transverse acetabular fracture fixation in the elderly via the posterior versus the anterior approach with and without a total hip arthroplasty

Author(s):  
Joel Moktar ◽  
Alan Machin ◽  
Habiba Bougherara ◽  
Emil H Schemitsch ◽  
Radovan Zdero

This study provides the first biomechanical comparison of the fixation constructs that can be created to treat transverse acetabular fractures when using the “gold-standard” posterior versus the anterior approach with and without a total hip arthroplasty in the elderly. Synthetic hemipelvises partially simulating osteoporosis (n = 24) were osteotomized to create a transverse acetabular fracture and then repaired using plates/screws, lag screws, and total hip arthroplasty acetabular components in one of four ways: posterior approach (n = 6), posterior approach plus a total hip arthroplasty acetabular component (n = 6), anterior approach (n = 6), and anterior approach plus a total hip arthroplasty acetabular component (n = 6). All specimens were biomechanically tested. No differences existed between groups for stiffness (range, 324.6–387.3 N/mm, p = 0.629), clinical failure load at 5 mm of femoral head displacement (range, 1630.1–2203.9 N, p = 0.072), or interfragmentary gapping (range, 0.67–1.33 mm, p = 0.359). Adding a total hip arthroplasty acetabular component increased ultimate mechanical failure load for posterior (2904.4 vs. 3652.3 N, p = 0.005) and anterior (3204.9 vs. 4396.0 N, p = 0.000) approaches. Adding a total hip arthroplasty acetabular component also substantially reduced interfragmentary sliding for posterior (3.08 vs. 0.50 mm, p = 0.002) and anterior (2.17 vs. 0.29 mm, p = 0.024) approaches. Consequently, the anterior approach with a total hip arthroplasty may provide the best biomechanical stability for elderly patients, since this fixation group had the highest mechanical failure load and least interfragmentary sliding, while providing equivalent stiffness, clinical failure load, and gapping compared to other surgical options.

2021 ◽  
Vol 2 (6) ◽  
pp. 365-370
Author(s):  
Nicholas Kolodychuk ◽  
Edwin Su ◽  
Michael M. Alexiades ◽  
Renee Ren ◽  
Connor Ojard ◽  
...  

Aims Traditionally, acetabular component insertion during total hip arthroplasty (THA) is visually assisted in the posterior approach and fluoroscopically assisted in the anterior approach. The present study examined the accuracy of a new surgeon during anterior (NSA) and posterior (NSP) THA using robotic arm-assisted technology compared to two experienced surgeons using traditional methods. Methods Prospectively collected data was reviewed for 120 patients at two institutions. Data were collected on the first 30 anterior approach and the first 30 posterior approach surgeries performed by a newly graduated arthroplasty surgeon (all using robotic arm-assisted technology) and was compared to standard THA by an experienced anterior (SSA) and posterior surgeon (SSP). Acetabular component inclination, version, and leg length were calculated postoperatively and differences calculated based on postoperative film measurement. Results Demographic data were similar between groups with the exception of BMI being lower in the NSA group (27.98 vs 25.2; p = 0.005). Operating time and total time in operating room (TTOR) was lower in the SSA (p < 0.001) and TTOR was higher in the NSP group (p = 0.014). Planned versus postoperative leg length discrepancy were similar among both anterior and posterior surgeries (p > 0.104). Planned versus postoperative abduction and anteversion were similar among the NSA and SSA (p > 0.425), whereas planned versus postoperative abduction and anteversion were lower in the NSP (p < 0.001). Outliers > 10 mm from planned leg length were present in one case of the SSP and NSP, with none in the anterior groups. There were no outliers > 10° in anterior or posterior for abduction in all surgeons. The SSP had six outliers > 10° in anteversion while the NSP had none (p = 0.004); the SSA had no outliers for anteversion while the NSA had one (p = 0.500). Conclusion Robotic arm-assisted technology allowed a newly trained surgeon to produce similarly accurate results and outcomes as experienced surgeons in anterior and posterior hip arthroplasty. Cite this article: Bone Jt Open 2021;2(6):365–370.


2015 ◽  
Vol 9 (1) ◽  
pp. 157-162 ◽  
Author(s):  
Sachiyuki Tsukada ◽  
Motohiro Wakui

Objective: The aim of the study was to compare the dislocation rate between total hip arthroplasty (THA) via direct anterior approach (DAA) and via posterior approach (PA). Methods: We compared a consecutive series of 139 THAs via DAA with 177 THAs via PA. All study patients received ceramic-on-ceramic bearing surfaces and similar uncemented prostheses. Dislocation-free survival after THA was estimated using the Kaplan–Meier survival method and compared between groups using the log-rank test. Results: In the DAA group, none of 139 hips experienced dislocations in five-year-average follow-up. In the PA group, seven hips experienced dislocations among 177 hips (4 %). The dislocation was significantly less in the DAA group compared to the PA group (p = 0.033). Conclusion: The dislocation rate of THA via DAA was significantly less than that of THA via PA.


2014 ◽  
Vol 29 (4) ◽  
pp. 817-821 ◽  
Author(s):  
Rajit Chakravarty ◽  
Nader Toossi ◽  
Anna Katsman ◽  
Douglas L. Cerynik ◽  
Susan P. Harding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document