Neural network–based adaptive composite dynamic surface control for electro-hydraulic system with very low velocity

Author(s):  
Qinyang Guo ◽  
Guanglin Shi ◽  
Dongmei Wang ◽  
Changyu He
Author(s):  
Yunfei Wang ◽  
Jiyun Zhao ◽  
Haigang Ding ◽  
He Zhang

The electro-hydraulic system is widely used in industrial production due to its high power-to-weight ratio, but the heavy-duty characteristics make the electro-hydraulic system subject to large disturbance force even if the actuator moves slightly, especially in mobile machines and multi-actuators system. Therefore, a position and velocity constraints method based on barrier Lyapunov function is proposed to guarantee the tracking error limited in a strict range to avoid the large disturbance force. Besides, the external disturbance, parameters uncertainty and modeling errors in the asymmetric cylinder electro-hydraulic systems affect the accuracy of position tracking seriously. So a high-gain disturbance observer is designed to estimate the lumped disturbance of the system, which can avoid amplification of the noise during the states measurement. In addition, dynamic surface control based on backstepping method is adopted to avoid the derivative explosion phenomenon when calculating the derivatives of virtual control inputs, which reduces the computational complexity of the system significantly. To verify the effectiveness of the proposed controller, proportional-integral controller and adaptive controller are designed to be compared with the high-gain disturbance observer–based dynamic surface controller with the backstepping method, and the comparison results show that the proposed controller has a more precise trajectory tracking performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Zhang Xiu-yu ◽  
Liu Cui-ping ◽  
Wang Jian-guo ◽  
Lin Yan

For the generator excitation control system which is equipped with static var compensator (SVC) and unknown parameters, a novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function with the following features: (1) the transformation of the excitation generator model to the linear systems is omitted; (2) the prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function; (3) the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the weighted vector itself; therefore, it is more suitable for the real time control; and (4) the explosion of complicity problem inherent in the backstepping control can be eliminated. It is proved that the new scheme can make the system semiglobally uniformly ultimately bounded. Simulation results show the effectiveness of this control scheme.


Sign in / Sign up

Export Citation Format

Share Document