Real-time application of IMC-PID-FO multi-loop controllers on the coupled tanks process

Author(s):  
Tassadit Chekari ◽  
Rachid Mansouri ◽  
Maamar Bettayeb

The coupled tanks process is a two input-two output system. It presents a nonlinear behavior and interactions characteristic. After the nonlinear model is obtained, it is linearized around an operating point. A fractional-order proportional–integral–derivative based on the internal model control paradigm (1DOF-IMC-PID-FO) multi-loop controller is determined without considering the interactions, and a fractional-order proportional–integral–derivative based on the 2-degree-of-freedom internal model control structure (2DOF-IMC-PID-FO) multi-loop controller is determined by considering the interactions. Thus, an interactions reduction effect controller is calculated. Both controllers are implemented on a real-time process using the Real Time Windows Target of MATLAB. The objective of the control is to maintain the water level in the lower tanks at desired values. In the experiment, setpoint tracking and disturbance rejection tests are carried out to assess the performance of both 1DOF and 2DOF-IMC-PID-FO multi-loop controllers.

Author(s):  
Kahina Titouche ◽  
Rachid Mansouri ◽  
Maamar Bettayeb ◽  
Ubaid M. Al-Saggaf

An analytical design for proportional integral derivative (PID) controller cascaded with a fractional-order filter is proposed for first-order unstable processes with time delay. The design algorithm is based on the internal model control (IMC) paradigm. A two degrees-of-freedom (2DOF) control structure is used to improve the performance of the closed-loop system. In the 2DOF control structure, an integer order controller is used to stabilize the inner-loop, and a fractional-order controller for the stabilized system is employed to improve the performance of the closed-loop system. The Walton–Marshall's method, which is applicable to quasi-polynomials, is then used to establish the internal stability condition of the closed-loop system (the fractional part of the controller in particular) and to seek the set of stabilizing proportional (P) or proportional-derivative (PD) controller parameters.


Author(s):  
B. Mabu Sarif ◽  
D. V. Ashok Kumar ◽  
M. Venu Gopala Rao

Time delays are generally unavoidable in the designing frameworks for mechanical and electrical systems and so on.. In both continuous and discrete schemes, the existence of delay creates undesirable impacts on the under-thought which forces exacting constraints on attainable execution.The presence of delay confounds the design structure procedure also. It makes continuous systems boundless dimensional and also extends the readings in discrete systems fundamentally. As the Proportional-Integral-Derivative (PID) controller based on internal model control is essential and strong to address the vulnerabilities and aggravations of the model. But for an real industry process, they are less susceptible to noise than the PID controller.It results in just one tuning parameter which is the time constant of the closed-loop system λ, the internal model control filter factor.It additionally gives a decent answer for the procedure with huge time delays. The design of the PID controller based on the internal model control, with approximation of time delay using Pade’ and Taylor’s series is depicted in this paper. The first order filter used in the design provides good set-point tracking along with disturbance rejection.


Author(s):  
Yan Ti ◽  
Kangcheng Zheng ◽  
Wanzhong Zhao ◽  
Tinglun Song

To improve handling and stability for distributed drive electric vehicles (DDEV), the study on four wheel steering (4WS) systems can improve the vehicle driving performance through enhancing the tracking capability to desired vehicle state. Most previous controllers are either a large amount of calculation, or requires a lot of experimental data, these are relatively time-consuming and laborious. According to the front and rear wheel steering angle of DDEV can be distributed independently, a novel controller named internal model controller with fractional-order filter (IMC-FOF) for 4WS systems is proposed and studied in this paper. The IMC-FOF is designed using the internal model control theory and compared with IMC and PID controller. The influence of time constant and fractional-order parameters which is optimized using quantum genetic algorithms (QGA) on tracking ability of vehicle state are also analyzed. Using a production vehicle as an example, the simulation is performed combining Matlab/Simulink and CarSim. The comparison results indicated that the proposed controller presents performance to distribute the front and rear wheel steering angle for ensuring better tracking capability to desired vehicle state, meanwhile it possesses strong robustness.


Author(s):  
Dazi Li ◽  
Xingyu He

Many processes in the industry can be modeled as fractional order, research on the fractional order become more and more popular. Usually, controllers such as fractional order PID (FOPID) or fractional active disturbance rejection control (FADRC) are used to control single-input-single-output (SISO) fractional order system. However, when it comes to fractional order two-input-two-output (TITO) processes, few research focus on this. In this paper, a new design method for fractional order control based on multivariable non-internal model control with inverted decoupling is proposed to handle non-integer order two-input-two-output system. The controller proposed in this paper just has two parameters to tune compared with the five parameters of the FOPID controller, and the controller structure can be achieved by internal model control (IMC) method which means it is easy to implement. The parameters tuning method used in this paper is based on frequency domain strategy. Compared with integer order situation, fractional order method is more complex, because the calculation of the frequency domain characteristics is difficult. The controller proposed in this paper is robust to process gain variations, what’s more, it provides ideal performance for both set point-tracking and disturbance rejection. Numerical results are given to show the performance of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document