Output feedback averaged sub-gradient integral sliding mode control to regulate the tridimensional autonomous motion of autonomous submersible vehicles

Author(s):  
Alejandra Hernández-Sánchez ◽  
Alexander Poznyak ◽  
Olga Andrianova ◽  
Isaac Chairez

This study presents the development of an output feedback control for regulating the movement of an autonomous submersible vehicles in the tridimensional space. The controller formulation applies the Averaged Sub-Gradient Integral Sliding Mode which is fed with the estimation of the translational velocity states by a distributed super-twisting algorithm. The structure of the autonomous submersible vehicles dynamics permits the implementation of the ASG algorithm using the estimates of translation velocity. The proposed scheme solves a non-linear extremum seeking problem that aims to minimize a non-strictly convex function that depends on the tracking error defined by the difference of some suitable reference trajectories and the coordinates of the submarine center of mass. The desired reference trajectories were designed to force the autonomous submersible vehicles three-dimensional motion to a continuous circuit in an oscillating shape over the horizontal plane combined with a submersion on the z-axis. The comparison between the proposed controller, the ASG with complete knowledge of the states and the state feedback controller is presented. This comparison confirms the output feedback ASG controller forced the autonomous submersible vehicles to the desired trajectory with a notable difference in the magnitude of the control given the estimation of the states. These outcomes justify the potential contributions of the suggested ASG integrated with the super-twisting algorithm to obtain the local minimization of the evaluated functional depending on the tracking error. The results justify the potential contributions of the suggested ASG with the super-twisting algorithm to regulate the position of the autonomous submersible vehicles to the desired trajectory.

Author(s):  
Lasse Schmidt ◽  
Torben O. Andersen ◽  
Henrik C. Pedersen

This paper discusses the utilization of the so-called twisting algorithm when applied in output feedback position control schemes for electro-hydraulic cylinder drives. The twisting controller was the first second order sliding controller ever introduced, and can structure-wise be considered a straight forward extension of the simplest first order sliding controller, that is, a relay controller. Such a controller may be implemented without the knowledge of system time constants etc., as opposed to the surface based first order sliding controllers which has been presented in numerous contributions in literature. This paper considers the twisting algorithm when applied directly for output feedback control, and with the design based on a reduced order model representation of an arbitrary valve driven hydraulic cylinder drive. The consequence of implementing such a controller with the well-known saturation-, or boundary layer method is discussed, and the control operation inside- and out-side the boundary layer region is considered. Furthermore, the global stability of such a controller is discussed, with emphasis on possible local instability modes. Results demonstrate that the proposed output feedback controller may be successfully applied to hydraulic valve driven cylinder drives, with performance being on the level with a conventional surface based first order sliding mode controller.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1144
Author(s):  
Jin Hoe Kim ◽  
Sung Jin Yoo

A nonlinear-observer-based design methodology is proposed for an adaptive event-driven output-feedback tracking problem with guaranteed performance of uncertain underactuated underwater vehicles (UUVs) in six-degrees-of-freedom (6-DOF). A nonlinear observer using adaptive neural networks is presented to estimate the velocity information in the presence of unknown nonlinearities in the dynamics of 6-DOF UUVs where a state transformation approach using a time-varying scaling factor is introduced. Then, an output-feedback tracker using a nonlinear error function and estimated states is recursively designed to overcome the underactuated problem of the system dynamics and to guarantee preselected control performance in three-dimensional space. It is shown that the tracking error of the nonlinear-observer-based output-feedback control system exponentially converges a small neighbourhood around the zero. Efficiency of the resulting output-feedback strategy is verified through a simulation.


Author(s):  
Jang-Hyun Park ◽  
Seong-Hwan Kim ◽  
Tae-Sik Park

A novel output-feedback controller for uncertain single-input single-output (SISO) nonaffine nonlinear systems is proposed using high-order sliding mode (HOSM) observer, which is a robust exact finite-time convergent differentiator. The proposed controller utilizes (n + 1)th-order HOSM observer to cancel the uncertainty and disturbance where n is the relative degree of the controlled system. As a result, the control law has an extremely simple form of linear in the differentiator states. It is required no separate sliding-mode controller or universal approximators such as neural networks (NNs) or fuzzy logic systems (FLSs) that are adaptively tuned online. The proposed controller guarantees finite time stability of the output tracking error.


Sign in / Sign up

Export Citation Format

Share Document