disturbance estimator
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 51)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Vol 2137 (1) ◽  
pp. 012024
Author(s):  
Hongliang Yan ◽  
Weizhi Zhai ◽  
Yan Geng

Abstract In order to solve the problem that the traditional uncertainty and disturbance estimator (UDE) control needs to increase the filter order to keep good performance when facing rapid disturbance changes, thus lead to cost increase in implementing the system, a speed control strategy of permanent magnet synchronous motor (PMSM) driver based on reduced order observer compensation is proposed. The designed control strategy is robust to the system with internal parameter variation and external torque disturbance. Through the compensation of load torque, the pressure of UDE controller is relieved, and then the tracking error of high-frequency component in load torque is eliminated, and the control performance of the system is improved more effectively. This paper proves the superiority of the new compound controller through comparison of simulation. results


Author(s):  
Xianqing Wu ◽  
Yijiang Zhao

In this article, the stabilization and disturbance estimation of the translational oscillator with a rotational actuator with nonvanishing disturbances are considered. Different from existing methods, a disturbance estimator is designed to eliminate the effects of unexpected external disturbances. As far as we know, this article presents the first finite-time disturbance-estimator-based nonsmooth control scheme for the translational oscillator with a rotational actuator system. Specifically, first, a series of changes of coordinates is made for the model of the translational oscillator with a rotational actuator system. Then, a disturbance estimator is presented to estimate uncertain disturbances and a nonsmooth control scheme is designed to ensure the convergence of all the states. Furthermore, rigorous theoretical analysis is given. Finally, simulation tests are carried out and the obtained results demonstrate that the designed approach exhibits better control performance and stronger robustness than the existing methods.


Author(s):  
Xiaowei Yang ◽  
Wenxiang Deng ◽  
Long Liu ◽  
Jianyong Yao

This article focuses on the asymptotic tracking control problem for uncertain nonlinear systems subject to both multiple disturbances and parametric uncertainties. To address this issue, a parameter adaptation law is synthesized to deal with the parametric uncertainties, and an adaptive-gain disturbance estimator (ADE) is constructed to estimate the mismatched and matched disturbances, and compensate them in feedforward channels, which eliminates the impact of disturbances on tracking performance. Meanwhile, an updated law for estimator gain driven by the estimation errors is utilized in the ADE when facing unknown upper bounds of disturbances, which reduces the conservatism of estimator gain selection and is beneficial to practical implementation. Based on the parameter adaption technique and the presented ADE approach, a composite controller is proposed to ensure an excellent asymptotic output tracking performance. The stability analysis shows the proposed controller can attain asymptotic tracking performance in the presence of both time-variant disturbances and parametric uncertainties. Comparative simulation results of the application to a robot manipulator reveal the validity of the developed approach.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dinesh D. Dhadekar ◽  
Ajay Misra ◽  
S.E. Talole

Purpose The purpose of the paper is to design a nonlinear dynamic inversion (NDI) based robust fault-tolerant control (FTC) for aircraft longitudinal dynamics subject to system nonlinearities, aerodynamic parametric variations, external wind disturbances and fault/failure in actuator. Design/methodology/approach An uncertainty and disturbance estimator (UDE) technique is used to provide estimate of total disturbance enabling its rejection and thereby achieving robustness to the proposed NDI controller. As needed in the NDI design, the successive derivatives of the output are obtained through an UDE robustified observer making the design implementable. Further, a control allocation scheme consigns control command from primary actuator to the secondary one in the event of fault/failure in the primary actuator. Findings The robustness is achieved against the perturbations mentioned above in the presence of actuator fault/failure. Practical implications Lyapunov analysis proves practical stability of the controller–observer structure. The efficacy and superiority of the proposed design has been demonstrated through Monte-Carlo simulation. Originality/value Unlike in many FTC designs, robustness is provided against system nonlinearities, aerodynamic parametric variations, external wind disturbances and sinusoidal input disturbance using a single control law which caters for fault-free, as well as faulty actuator scenario.


Sign in / Sign up

Export Citation Format

Share Document