Approximation-Free Output-Feedback Control of Uncertain Nonlinear Systems Using Higher-Order Sliding Mode Observer

Author(s):  
Jang-Hyun Park ◽  
Seong-Hwan Kim ◽  
Tae-Sik Park

A novel output-feedback controller for uncertain single-input single-output (SISO) nonaffine nonlinear systems is proposed using high-order sliding mode (HOSM) observer, which is a robust exact finite-time convergent differentiator. The proposed controller utilizes (n + 1)th-order HOSM observer to cancel the uncertainty and disturbance where n is the relative degree of the controlled system. As a result, the control law has an extremely simple form of linear in the differentiator states. It is required no separate sliding-mode controller or universal approximators such as neural networks (NNs) or fuzzy logic systems (FLSs) that are adaptively tuned online. The proposed controller guarantees finite time stability of the output tracking error.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jun Zhou ◽  
Xianqiang Li

A class of unknown nonaffine pure-feedback nonlinear systems is investigated and a novel output feedback control scheme with low complexity is proposed, based on the sliding mode control theory. The scheme is capable of guaranteeing output tracking error with finite-time convergence and bounded closed loop signals. In this scheme, a novel transformation method is included, which can easily transform the state-feedback control of nonaffine systems into output feedback control of strict-feedback affine systems. Based on the transformed affine systems, a novel finite-time sliding mode control is designed, which is continuous and nonsingular. The control scheme proposed in this work is simple and easy to implement, in which the ‘‘explosion of complexity’’ caused by backstepping-like scheme is completely avoided. And the finite-time convergence is successfully achieved. In addition, the scheme is designed based on output feedback control. And the dynamics of the nonaffine nonlinear systems is unknown in the design process. Thus, the system knowledge needed is reduced.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Yong-Sheng Hao ◽  
Zhi-Gang Su ◽  
Xiangyu Wang

The position tracking control problem of a hydraulic manipulator system is investigated. By utilizing homogeneity theory, a finite-time output feedback controller is designed. Firstly, a finite-time state feedback controller is developed based on homogeneity theory. Secondly, a nonlinear state observer is designed to estimate the manipulator’s velocity. A rigorous analysis process is presented to demonstrate the observer’s finite-time stability. Finally, the corresponding output feedback tracking controller is derived, which stabilizes the tracking error system in finite time. Simulations demonstrate the effectiveness of the designed finite-time output feedback controller.


Author(s):  
Ali Şener Kaya ◽  
Mehmet Zeki Bilgin

In this paper, an output feedback sliding mode position controller/estimator scheme is proposed to control an single input single output (SISO) system subject to bounded nonlinearities and parametric uncertainties. Various works have been published addressing the theoretical effectiveness of the third-order sliding mode control (3-SMC) in terms of chattering alleviation and controller robustness. However, the application of 3-SMC with a feedback estimator to a flight actuators has not been treated explicitly. This is due to the fact that the accurate full state estimation is required since SMCs performance can be severely degraded by measurement or estimation noise. Aerodynamic control surface actuators in air vehicles mostly employ linear position controllers to achieve guidance and stability. The main focus of the paper is to experimentally demonstrate the stability and positioning performance of a third-order SMC applied to a class of system with high relative degree and bounded parametric uncertainties. The performance of the closed-loop system is also compared with a lower level SMC and classical controller to show the effectiveness of the algorithm. Realization of the proposed algorithm from an application perspective is the main target of this paper and it demonstrates that a shorter settling time and higher control action attenuation can be achieved with the proposed strategy.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 456 ◽  
Author(s):  
Jang-Hyun Park ◽  
Tae-Sik Park ◽  
Seong-Hwan Kim

A novel differentiator-based approximation-free output-feedback controller for uncertain nonautonomous nonlinear pure-feedback systems is proposed. Using high-order sliding mode observer, which is a finite-time exact differentiator, the time-derivatives of the signal generated using tracking error and filtered input are directly estimated. As a result, the proposed non-backstepping control law and stability analysis are drastically simple. The tracking error vector is guaranteed to be exponentially stable in finite time regardless of the nonautonomous property in the considered system. It does not require neural networks or fuzzy logic systems, which are typically adopted to capture unstructured uncertainties intrinsic in the controlled system. As far as the authors know, there are no research results on the output-feedback controller for the uncertain nonautonomous pure-feedback nonlinear systems. The results of the simulation show clearly the performance and compactness of the control scheme proposed.


2019 ◽  
Vol 41 (10) ◽  
pp. 2897-2908 ◽  
Author(s):  
Mohsen Hasanpour Naseriyeh ◽  
Adeleh Arabzadeh Jafari ◽  
Mehrnoosh Zaeifi ◽  
Seyed Mohammad Ali Mohammadi

This paper considers the problem of observer-based adaptive fuzzy output feedback control for a piezo-positioning mechanism with unknown hysteresis. In this paper, fuzzy logic systems (FLSs) are used to estimate the unknown nonlinear functions, and also Nussbaum function is utilized to overcome the unknown direction hysteresis. Based on the Lyapunov method, the control scheme is constructed by using the backstepping and adaptive technique. In order to better control performance in reducing tracking error, the particle swarm optimization (PSO) algorithm is utilized for tuning the controller parameters. Proposed adaptive controller guarantees that all the closed-loop signals are semiglobally uniformly ultimately bounded (SGUUB) and the tracking error can converge to a small neighborhood of the origin. Finally, the simulation results are provided to demonstrate the effectiveness and robustness of the proposed approach.


Author(s):  
Mansour Karkoub ◽  
Tzu Sung Wu

In this paper, the design problem of delayed output feedback control scheme using two-layer interval fuzzy observers for a class of nonlinear systems with state and output delays is investigated. The Takagi-Sugeno type fuzzy linear model with an on-line update law is used to approximate the nonlinear system. Based on the fuzzy model, a two-layer interval fuzzy observer is used to reconstruct the system states according to equal interval output time delay slices. Subsequently, a delayed output feedback adaptive fuzzy controller is developed to override the nonlinearities, time delays, and external disturbances such that the H∞ tracking performance is achieved. The linguistic information is developped by setting the membership functions of the fuzzy logic system and the adaptation parameters to estimate the model uncertainties directly for using linear analytical results instead of estimating nonlinear system functions. The filtered tracking error dynamics are designed to satisfy the Strictly Positive Realness (SPR) condition. Based on the Lyapunov stability criterion and linear matrix inequalities (LMIs), some sufficient conditions are derived so that all states of the system are uniformly ultimately bounded and the effect of the external disturbances on the tracking error can be attenuated to any prescribed level and consequently an H∞ tracking control is achieved. Finally, a numerical example of a two-link robot manipulator is given to illustrate the effectiveness of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document