scholarly journals Statistical methods for characterizing transfusion-related changes in regional oxygenation using near-infrared spectroscopy (NIRS) in preterm infants

2018 ◽  
Vol 28 (9) ◽  
pp. 2710-2723 ◽  
Author(s):  
Ying Guo ◽  
Yikai Wang ◽  
Terri Marin ◽  
Kirk Easley ◽  
Ravi M Patel ◽  
...  

Near infrared spectroscopy (NIRS) is an imaging-based diagnostic tool that provides non-invasive and continuous evaluation of regional tissue oxygenation in real-time. In recent years, NIRS has shown promise as a useful monitoring technology to help detect relative tissue ischemia that could lead to significant morbidity and mortality in preterm infants. However, some issues inherent in NIRS technology use on neonates, such as wide fluctuation in signals, signal dropout and low limit of detection of the device, pose challenges that may obscure reliable interpretation of the NIRS measurements using current methods of analysis. In this paper, we propose new nonparametric statistical methods to analyze mesenteric rSO2(regional oxygenation) produced by NIRS to evaluate oxygenation in intestinal tissues and investigate oxygenation response to red blood cell transfusion (RBC) in preterm infants. Specifically, we present a mean area under the curve (MAUC) measure and a slope measure to capture the mean rSO2level and temporal trajectory of rSO2, respectively. We develop estimation methods for the measures based on multiple imputation and spline smoothing and further propose novel nonparametric testing procedures to detect RBC-related changes in mesenteric oxygenation in preterm infants. Through simulation studies, we show that the proposed methods demonstrate improved accuracy in characterizing the mean level and changing pattern of mesenteric rSO2and also increased statistical power in detecting RBC-related changes, as compared with standard approaches. We apply our methods to a NIRS study in preterm infants receiving RBC transfusion from Emory University to evaluate the pre- and post-transfusion mesenteric oxygenation in preterm infants.

2021 ◽  
Vol 8 ◽  
Author(s):  
Leeann R. Pavlek ◽  
Clifford Mueller ◽  
Maria R. Jebbia ◽  
Matthew J. Kielt ◽  
Omid Fathi

With advances in neonatal care, survival of premature infants at the limits of viability has improved significantly. Despite these improvement in mortality, infants born at 22–24 weeks gestation are at a very high risk for short- and long-term morbidities associated with prematurity. Many of these diseases have been attributed to abnormalities of tissue oxygenation and perfusion. Near-infrared spectroscopy utilizes the unique absorption properties of oxyhemoglobin and deoxyhemoglobin to provide an assessment of regional tissue oxygen saturation, which can be used to calculate the fractional tissue oxygen extraction. This allows for a non-invasive way to monitor tissue oxygen consumption and enables targeted hemodynamic management. This mini-review provides a brief and complete overview of the background and physiology of near-infrared spectroscopy, practical use in extremely preterm infants, and potential applications in the neonatal intensive care unit. In this mini-review, we aim to summarize the three primary application sites for near-infrared spectroscopy, disease-specific indications, and available literature regarding use in extremely preterm infants.


1997 ◽  
Vol 352 (1354) ◽  
pp. 743-750 ◽  
Author(s):  
H. R. Heekeren ◽  
H. Obrig ◽  
R. Wenzel ◽  
K. Eberle ◽  
J. Ruben ◽  
...  

Using near–infrared spectroscopy, we investigated the time–course of the concentrations of oxygenated haemoglobin, [oxy–Hb], and deoxygenated haemoglobin, [deoxy–Hb], in the occipital cortex of healthy human adults during sustained visual stimulation. Within a few seconds after stimulation (coloured dodecahedrons) we observed a decrease in [deoxy–Hb], peaking after 13 s (‘initial undershoot’). In the subsequent 1–2 min, in seven out of ten subjects, [deoxy–Hb] gradually returned to a plateau closer to the baseline level. After cessation of stimulation, there was a ‘post–stimulus overshoot’ in the concentration of deoxyhaemoglobin. There was a statistically significant correlation between the size of the ‘initial undershoot’ and the ‘post–stimulus overshoot’. The concentration of oxyhaemoglobin increased upon functional activation. However, in the mean across all subjects there was no initial overshoot. After approximately 19 s it reached a plateau and remained constantly elevated throughout the activation period. After cessation of activation there was a ‘post–stimulus undershoot’ of oxyhaemoglobin. It is important to consider the time–course of haemoglobin oxygenation when interpreting functional activation data, especially those data obtained with oxygenation–sensitive methods, such as BOLD contrast fMRI.


Sign in / Sign up

Export Citation Format

Share Document