scholarly journals A Simple Method for Theoretical Prediction of Fracture Toughness of Multilayered Composites

2003 ◽  
Vol 12 (4) ◽  
pp. 096369350301200 ◽  
Author(s):  
R. Ramesh Kumar ◽  
P.N. Dileep ◽  
S. Renjith ◽  
G. Venkateswara Rao

Intralaminar fracture toughness of a fibre-reinforced angle ply and cross ply laminates are generally obtained by testing compact tension specimen and theoretically predicted using the well-known MCCI approach. The crack initiation direction, which is treated as a branch direction for the theoretical prediction, is an apriori. A conservative estimation on the toughness value obtained by considering branch crack angle corresponding to each fibre orientation in a laminate shows a gross error with respect to test data. In the present study a new criterion for the prediction of crack initiation angle is arrived at based on Tsai-Hill minimum strain energy density criterion. This shows a very good agreement with test data available in literature on fracture toughness of various multilayered composites with large size cracks with a/w ≥ 0.3. It is interesting to note that in a multilayered composite a simple method of prediction in which crack initiation direction is assumed to be the fibre orientation that is close to the initial crack direction gives a good estimation of the intralaminar fracture toughness.

Author(s):  
Masahiro Takanashi ◽  
Satoshi Izumi ◽  
Shinsuke Sakai ◽  
Naoki Miura

In the present study, the transferability of elastic-plastic fracture toughness from a small-scale to a large-scale specimen was experimentally confirmed for carbon steel pipe with mild toughness. Fracture toughness tests were carried out on a pipe specimen 318.5 mm in outer diameter, 10.3 mm in thickness and having a through-wall crack, and also on a compact tension specimen 9.7mm in thickness, 25.4 mm in width, that had been cut out from the pipe specimen. Test results indicated the J-integral value of the pipe specimen at the crack initiation to be nearly twice that of the CT specimen. Finite element analysis conducted on the two specimens indicated this difference to arise primarily from the constraint near the crack front. Discussion was also made of the effects of crack orientation on elastic-plastic fracture toughness of CT specimens. The J-integral value at crack initiation in the specimen whose crack direction coincided with the pipe axial was found to be almost 54 % more than for specimens whose crack direction was circumferential.


1976 ◽  
Vol 98 (2) ◽  
pp. 135-142 ◽  
Author(s):  
J. F. Copeland

The effects of sulfur content on the fracture toughness properties of 2 1/4Cr-1 Mo steel were evaluated at test temperatures above, at, and below the nil ductility transition temperature (NDTT) of −23°C (−10°F). Small, 12.7-mm (0.5-in.) thick compact tension specimen results were combined with J-integral, Equivalent Energy, and Crack Opening Displacement analytical techniques to provide KIc results up to 22°C (72°F). It was found that the sulfur content of this steel has a large detrimental effect on KIc at the NDTT and above, where microvoid coalescence is the fracture mode. Sulfur has no significant effect at −73°C (−100°F) where cleavage occurs. These results also indicate that the higher Charpy V-notch energy at NDTT, shown by lower sulfur steels, is translatable into increased fracture resistance.


Author(s):  
Y. Kim ◽  
Y. J. Chao ◽  
M. J. Pechersky ◽  
M. J. Morgan

Elastic-plastic crack front fields in arc-shaped tension specimens (C-specimens) were analyzed by a three-dimensional finite element method. The effect of side grooves on the ductile fracture behavior was investigated by studying the J-integral distribution, plane-strain constraint parameter, and development of plastic zones and comparing to experimental data. The applicability of the η factor (derived for use with compact tension specimens) for the calculation of J-integral values for the C-specimen was also investigated. The results show that side grooves promote and establish near plane strain conditions at the crack front in sub-size specimens. It was also found that a two-dimensional plane-strain analysis in conjunction with the standard American Society for Testing and Materials (ASTM) tests was sufficient to determine the fracture toughness values from side-grooved C-specimen. The results indicate the η factor for compact tension specimen as specified in the ASTM standards appears to produce reliable results for the calculation of J of C-specimens.


2021 ◽  
Author(s):  
Diego F. Mora M. ◽  
Markus Niffenegger

Abstract The core region of the RPV can be considered a hollow circular cylinder disregarding the geometrical details due to nozzles. This contribution investigates the prediction capabilities for crack initiation, crack growth and arrest by means of a rather simple method based on the closed-weight function formula for the stress intensity factor (SIF) for axial cracks in hollow cylinders subjected to thermal shock. The method is explained together with some illustrative examples for real low allow steel used in nuclear applications. In order to obtain the temperature and stress distribution in the cylinder during the thermal shock, a finite element (FE) model is defined to obtain the uncoupled solution of these two fields needed for the closed-weight function. Since the material exhibits a ductile-brittle transition fracture behavior, the temperature-dependent fracture toughness for initiation and for arrest are described using the ASME model. The solution for the SIF is based on linear elastic fracture mechanics (LEFM) and therefore only elastic material is assumed and the crack can propagate in brittle manner. The crack initiates propagation if the SIF value at the crack tip reaches the fracture toughness (for initiation) and propagates unstably in mode I unless the fracture arrest toughness is reached. The quality of the solution is checked by comparing the obtained solution for a “stationary” crack with the calculated extended finite element method (XFEM) solution for the same loading transient. The results show that for some geometries of the cylinder, the crack stops and in some other cases the crack propagates until the cylinder fails. The combined closed-weight function-initiation-growth-arrest (WFF-IGA) algorithm does not require expensive computational resources and gives fast reliable results. The WFF-IGA method provides a powerful and economical way to predict the crack propagation and arrest of the initial crack. This is an advantage when an optimization of the structure is needed.


2004 ◽  
Vol 126 (3) ◽  
pp. 293-299 ◽  
Author(s):  
Y. Kim ◽  
Y. J. Chao ◽  
M. J. Pechersky ◽  
M. J. Morgan

Elastic-plastic crack front fields in arc-shaped tension specimens (C-specimens) were analyzed by a three-dimensional finite element method. The effect of side grooves on the ductile fracture behavior was investigated by studying the J-integral distribution, plane-strain constraint parameter, and development of plastic zones and comparing to experimental data. The applicability of the η factor (derived for use with compact tension specimens) for the calculation of J-integral values for the C-specimen was also investigated. The results show that side grooves promote and establish near plane strain conditions at the crack front in sub-size specimens. It was also found that a two-dimensional plane-strain analysis in conjunction with the standard American Society for Testing and Materials (ASTM) tests was sufficient to determine the fracture toughness values from side-grooved C-specimen. The results indicate the η factor for compact tension specimen as specified in the ASTM standards appears to produce reliable results for the calculation of J of C-specimens.


Author(s):  
Claire Naudin ◽  
Andre´ Pineau ◽  
Jean Michel Frund

Segregation zones, called ghost lines, may be present near the inner side of PWR vessel issued from plain ingots of A508 class 3 steel. They are enriched in alloying elements and impurities and may have a significant influence on mechanical properties, in particular on fracture toughness. Toughness values of a compact tension specimen containing segregation zones have been evaluated using a bimaterial model with a 3 D finite element simulation. Two fracture criteria have been tested and the results compared with the French database of RPV steel toughness values. The first model assumes that fracture occurs when the maximum tensile stress ahead of the crack tip reaches a critical value over a critical distance. The second model, which is statistical, is based on Beremin’s theory. The results obtained with both models are compared. It is shown that the critical fracture stress model reproduces with a good accuracy the lower bound of toughness values which were determined in RPV steel. The Beremin model gives an estimate of the scatter in fracture toughness measurements. This model takes also into account a size effect related to the ghost line density present along the crack front.


2018 ◽  
Vol 47 (2) ◽  
pp. 91-95 ◽  
Author(s):  
Fatih Bozkurt ◽  
Eva Schmidová

In engineering applications, steels are commonly used in various areas. The mechanical members are exposed to different loading conditions and this subject can be investigated in fracture mechanics. Fracture toughness (KIC) is the important material property for fracture mechanics. Determination of this properties is possible using a compact tension specimen, a single edge notched bend or three-point loaded bend specimen, which are standardized by different institutions. Researchers underline that these standardized methods are complex, the manufacturing process is difficult, they require special fixtures for loading during the experiment and the test procedures are time consuming. Alternative methods are always being sought by researchers. In this work, two different approaches are investigated for S355 steels. In the first method, a circumferentially cracked round bar was loaded in tensile mode and pulled till failure. Using suitable equations, fracture toughness can be calculated. In the second method, a circumferentially notched bar specimen without fatigue pre-cracking was loaded in a tensile machine. By means of fracture load values, fracture toughness was determined by the proposed equations. It can be stated that these two different approaches for calculating fracture toughness are simple, fast and economical.


Sign in / Sign up

Export Citation Format

Share Document