multilayered composites
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 26)

H-INDEX

20
(FIVE YEARS 2)

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 38
Author(s):  
Olga Kamynina ◽  
Sergey Vadchenko ◽  
Natalia Shkodich ◽  
Ivan Kovalev

Ta/Ti/Ni/ceramic multilayered composites were successfully prepared by combustion synthesis. Laminated composites Ti–Ta–(Ti + 0.65C)–Ni–(Ti + 1.7B)–(Ti + 1.7B)–Ta–Ni-Ti and 3(Ti + 1.7B)–Ta–(5Ti + 3Si)–Ta–(Ti + 1.7B)–Ta–(5Ti + 3Si)–Ta–3(Ti + 1.7B) were combustion synthesized in an Ar atmosphere using (1) metallic foils (Ti, Ta, Ni) and (2) reactive tapes (Ti + 0.65C), (Ti + 1.7B), and (5Ti + 3Si), which, upon combustion, yielded ceramic layers as starting materials. The microstructure, crystal structure, and chemical composition of multilayered composites were characterized by SEM, EDX, and XRD. Their flexural strength was measured at 1100 °C. Upon combustion, Ta foils turned strongly joined with Ti ones due to the development of high temperature in the reactive layers yielding TiCx and TiBy. The formation of a liquid phase between metallic foils and reactive tapes and mutual interdiffusion between melted components during combustion favored strong joining between refractory metallic foils. Good joining between metals and ceramics is reached due to the formation of thin interfacial layers in the form of cermets and eutectic solutions.


Author(s):  
Nassar Haidar

Abstract Compact neutronic shields for mobile nuclear reactors or accelerator-based neutron beams are known to be optimized multilayered composites. This paper is a simplified short inroad to the complex problem of optimizing the design of such shields when they attenuate a neutron beam to extremise certain quality criteria, in plane geometry, subject to equality and inequality constraints. In the equality constraints, the interfacial polychromatic neutron fluxes are solutions to course-mesh finite-difference holonomic state equations. The set of these interfacial fluxes act as state variables,while the set of layer thicknesses, or their poisoning (by added neutron absorbers) concentrations are decision variables. The entire procedure is then demonstrated to be reducible to standard Kuhn-Tucker semi-linear programming that may also lead robustly to an optimal sequence for these layers.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5393
Author(s):  
Caitlin A. Taylor ◽  
Eric Lang ◽  
Paul G. Kotula ◽  
Ronald Goeke ◽  
Clark S. Snow ◽  
...  

Helium is insoluble in most metals and precipitates out to form nanoscale bubbles when the concentration is greater than 1 at.%, which can alter the material properties. Introducing controlled defects such as multilayer interfaces may offer some level of helium bubble management. This study investigates the effects of multilayered composites on helium behavior in ion-implanted, multilayered ErD2/Mo thin film composites. Following in-situ and ex-situ helium implantation, scanning and transmission electron microscopy showed the development of spherical helium bubbles within the matrix, but primarily at the layer interfaces. Bubble linkage and surface blistering is observed after high fluence ex-situ helium implantation. These results show the ability of metallic multilayers to alter helium bubble distributions even in the presence of a hydride layer, increasing the lifetime of materials in helium environments.


2021 ◽  
pp. 679-694
Author(s):  
Zhengrong Fu ◽  
Zheng Zhang ◽  
Lifang Meng ◽  
Baipo Shu ◽  
Yuntian Zhu ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4752
Author(s):  
Changyoon Jeong ◽  
Sang-Ha Hwang ◽  
Byeong-Joo Kim ◽  
Han Gi Chae ◽  
Young-Bin Park

Highly sensitive and flexible composite sensors with pressure and temperature sensing abilities are of great importance in human motion monitoring, robotic skins, and automobile seats when checking the boarding status. Several studies have been conducted to improve the temperature-pressure sensitivity; however, they require a complex fabrication process for micro-nanostructures, which are material-dependent. Therefore, there is a need to develop the structural designs to improve the sensing abilities. Herein, we demonstrate a flexible composite with an enhanced pressure and temperature sensing performance. Its structural design consists of a multilayered composite construction with an elastic modulus gradient. Controlled stress concentration and distribution induced by a micropatterned structure between the layers improves its pressure and temperature sensing performance. The proposed composite sensor can monitor a wide range of pressure and temperature stimuli and also has potential applications as an automotive seat sensor for simultaneous human temperature detection and occupant weight sensing.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 795
Author(s):  
Miao Cao ◽  
Cui-Ju Wang ◽  
Kun-Kun Deng ◽  
Kai-Bo Nie

Ti/Al multilayered composites (LMCs) with different layers were prepared by hot-pressing and hot-rolling. The effects of interface on the deep drawability of LMCs were explored. The results indicate that LMCs with more layers have a higher limit-drawing ratio (LDR) and exhibit an excellent deep drawability. The texture strength of the Ti layer gradually weakens with the increase of layers, which leads to the smaller yield ratio (σs/σb), the plastic strain ratio (r), and the larger strain hardening index (n), thus the deep drawability of LMCs with more layers is enhanced effectively. The Ti/Al interfaces in three, five, and seven layers of LMCs exhibit straight, small wave-like interlocking, and dense serrated structures at the corner of the cylindrical parts, respectively. The component metals become thinner with the increase of layers, and the increased interfacial pressure promotes the formation of an increasingly firm overlapped interfacial structure. The load transfer via the interfaces makes the stress distribution between layers more uniform with the increase of layers, which helps to coordinate deformation. Deflection and tearing occur when the cracks propagate to the interface due to the complex stress state, which hinders and delays the crack penetration, thereby improving the deep drawability of LMCs with more layers.


2021 ◽  
Vol 62 (5) ◽  
pp. 603-609
Author(s):  
Shan Lin ◽  
Hiroshi Okuda ◽  
Katsushi Matsumoto ◽  
Masahiro Yamaguchi ◽  
Kazufumi Sato

Sign in / Sign up

Export Citation Format

Share Document