initial crack
Recently Published Documents


TOTAL DOCUMENTS

464
(FIVE YEARS 118)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Yuman Sun ◽  
He Xue ◽  
Fuqiang Yang ◽  
Shuai Wang ◽  
Shun Zhang ◽  
...  

The material mechanical properties and crack propagation behavior of dissimilar metal welded joint (DMWJ) of pressurized water reactor (PWR) was investigated. In this research, the mechanical parameters of the cladding layer materials (304L-SA508) of the DMWJ in PWRs were obtained by the continuous indentation test. Simultaneously, the user-defined (USDFLD) subroutine in ABAQUS was used to establish the heterogeneous materials model of the welded joint. On this basis, the local crack propagation path of DMWJs has been discussed based on the extended finite element method (XFEM). The result indicated that the strength value at the fusion boundary line (FB line) is the largest, and the yield strength reaches 689 MPa. The yield stress values of the cladding metal (304 L) and base metal (SA508) are 371 MPa and 501 MPa, respectively. Affected by the material constraint effect of the DMWJ, the crack will propagate through the FB line when the initial crack is perpendicular to the FB line. And when the initial crack parallels the FB line, the crack will deviate from it. Meanwhile, the crack propagation length is smaller as the initial crack tip is closer to the FB line when the load condition is constant.


Structures ◽  
2022 ◽  
Vol 35 ◽  
pp. 388-405
Author(s):  
Huiyun Qiao ◽  
Mingfeng Zhang ◽  
Zhongcun Liu ◽  
Yu Chen ◽  
Huasheng Qiu ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zuoqing Bi ◽  
Han Liang ◽  
Qianjia Hui

The rock burst proneness of coal is closely related to the coal mass structure. Therefore, the initial crack distribution of high burst proneness coal, its fracture development, and failure process under loading conditions are of great significance for the prediction of rock burst. In this study, high burst proneness coal is used to prepare experiment samples. The surface cracks of the samples are identified and recorded. The internal crack of the sample is detected by nuclear magnetic resonance (NMR) technology to determine the crack ratio of each sample. Then, 3D-CAD technology is used to restore the initial crack of the samples. Uniaxial compression test is carried out, and AE properties are recorded in the test. The stress-strain curve, the distribution of the fractural points within the sample at different stress states, and the relationship between ring count and stress are obtained. Results show that the stress-strain curves of high burst proneness coal are almost linear, to which the stress-ring count curves are similar. The distributions of fractural points in different bearing states show that the fracture points emerge in the later load stage and finally penetrate to form macrofracture, resulting in sample failure. This study reveals the initial crack distribution of coal with high burst proneness and the fracture development under bearing conditions, which provides a theoretical basis for the prediction technology of rock burst and technical support for the research of coal structure.


2021 ◽  
Vol 16 (6) ◽  
pp. 683-689
Author(s):  
Mohammed Noori Hussein ◽  
Ahmed Alkadhimi ◽  
Wisam Abdullah Najim ◽  
Hashim A. Almousawi

Seismic responses of cracked scaled-down arch dams were investigated by experiment on a shaking table. Two different curvature models (M1 and M2) were cast by using a plan concrete. Dams properties, including materials and dimensions, were carefully simulated. A significant earthquake magnitude with (7.7M) and water pressure were applied on the dam's models. Considering water and seismic loadings, the dynamic reactions of the arch dam's system were investigated. Both models showed crack overstresses or propagation on the dam's model as a result of seismic excitations. The arch dam with a higher degree of curvature was recorded 44 Mpa of stress evaluation which less by 30.7% of the arch dam with the lowest degree of curvature. The results indicated that raising the degree of curvature led to raising the dam's stability, earthquake resistance, less displacement, and less growth of tensile cracks.


2021 ◽  
Vol 3 (2) ◽  
pp. 111-124
Author(s):  
Yuriski Nasution ◽  
Yuriski Fair Nasution Chairika Nasution ◽  
DN Adnyana

Tulisan ini membahas tentang kegagalan yang terjadi pada front drive shaft kanan  kendaraan dengan spesifikasi material baja karbon medium S45C. Front drive shaft kanan menerima beberapa beban dynamis dan torsi sehingga harus kuat untuk menanggung stres [1]. Pada front drive shaft kanan menunjukkan bahwa adanya initial crack yang menyebabkan brittle fracture over load dan  disebabkan oleh beban mendadak dari luar. Tujuan penelitian ini adalah untuk mengetahui faktor penyebab kegagalan tersebut dan memberikan solusi bila terjadi kasus yang serupa pada komponen dengan material yang sama.   Kata kunci: Front drive shaft kanan mobil, baja carbon medium S45C, brittle fracture over load, akibat beban mendadak.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7467
Author(s):  
Meng-Hsiu Tsai ◽  
Chia-Ming Yang ◽  
Yu-Xuan Hung ◽  
Chao-Yong Jheng ◽  
Yen-Ju Chen ◽  
...  

Ti6Al4V specimens with porous structures can be fabricated by additive manufacturing to obtain the desired Young’s modulus. Their mechanical strength and deformation behavior can be evaluated using finite element analysis (FEA), with various models and simulation methodologies described in the existing literature. Most studies focused on the evaluation accuracy of the mechanical strength and deformation behavior using complex models. This study presents a simple elastic model for brittle specimens followed by an electron beam additive manufacturing (EBAM) process to predict the initial crack site and threshold of applied stress related to the failure of cubic unit lattice structures. Six cubic lattice specimens with different porosities were fabricated by EBAM, and compression tests were performed and compared to the FEA results. In this study, two different types of deformation behavior were observed in the specimens with low and high porosities. The adopted elastic model and the threshold of applied stress calculated via FEA showed good capabilities for predicting the initial crack sites of these specimens. The methodology presented in this study should provide a simple yet accurate method to predict the fracture initiation of porous structure parts.


2021 ◽  
Vol 130 ◽  
pp. 105777
Author(s):  
Hongmei Tan ◽  
Xianqi Hu ◽  
Xiuping Wu ◽  
Yong Zeng ◽  
Xue Tu ◽  
...  

2021 ◽  
Vol 58 (6) ◽  
pp. 61-67
Author(s):  
M. Urbaha ◽  
I. Agafonovs ◽  
V. Turko ◽  
J. Fescuks

Abstract The paper presents the results of standard specimen fracture made of anisotropic carbon fiber plastic with an epoxy matrix. Static stepwise loading of the specimen was carried out on an Instron 8801 testing machine to determine the characteristics of ductile fracture G1C in the first mode in accordance with ASTM D5528. During loading, the parameters of acoustic emission (AE) signals, such as AE impulse amplitudes and their energy were synchronously recorded. At the same time, the magnitude of the opening and the growth of the crack initiated by the artificial cut at the end of the specimen were recorded. According to the analysis of the acoustic emission signals, three zones with different G1C behaviour were identified: initial crack propagation, its stationary growth and accelerated fracture of the specimen. The zonal character of the change in the acoustic emission signals made it possible to determine the energy of the acoustic emission signals as diagnostic evidence for the onset of rapid destruction of the specimen. The amplitude of the AE-signals in the zones, however, remained constant. Online monitoring of changes in the energy of acoustic emission signals will prevent the onset of rapid destruction of an object in places of its deformations. The paper does not aim at defining G1C as usual. It presents the investigation of the fracture stages for a composite material using an acoustic emission method.


Author(s):  
Xin Yang ◽  
Ninghui Liang ◽  
Yang Hu ◽  
Rui Feng

AbstractTo study the influence of polypropylene fibers with different thicknesses on concrete beams, inclined section shear tests of polypropylene fiber concrete beams were carried out. The cracking load, ultimate load, midspan deflection, reinforcement, and strain of polypropylene fiber concrete beams and conventional reinforced-concrete beams under shear were compared and analyzed. The load-bearing capacity of the rectangular beams was improved significantly by polypropylene fiber addition. Compared with conventional reinforced-concrete beams, the limit shear load of concrete beams with polypropylene fibers and multisize polypropylene concrete beams that were reinforced with three types of fibers increased by 8.67% and 17.07%, respectively. By mixing polypropylene fibers into concrete beams, the initial crack shear force of the beam was improved, the number of cracks was increased and the crack width was reduced, which can increase the beam ductility, inhibit crack formation and increase the strength. The computational formula of the shear ultimate bearing capacity of polypropylene fiber–concrete beams was revised according to composite material theory, and the calculated results were consistent with the test values.


2021 ◽  
Vol 11 (22) ◽  
pp. 11004
Author(s):  
Anton Azarov ◽  
Andrey Patutin ◽  
Sergey Serdyukov

In this paper, we investigate the problem of the propagation of hydraulic fractures in a poroelastic medium that has a circular cavity. The research was conducted using the extended finite element method (XFEM) implemented in the ABAQUS software package. The problem was considered in a plane formulation. The initial crack was oriented parallel to the surface of the cavity. It was shown that the path of the hydraulic fracture depends strongly on the hydrostatic stress in the medium and the distance between the crack and the cavity. We studied the influences of the poroelastic parameters, such as permeability and the Biot coefficient, on the propagation of cracks. It was shown that the cracks were less curved when the coupled problem of poroelasticity was considered. The features of fluid pressure changes inside the fracture and at the opening of the mouth were studied. It was shown that the fluid pressure in the fracture during injection was minimally sensitive to the state of the stress in the medium, to the position of the initial crack, and to the poroelastic parameters. The solution to the problem in this setting can be used to simulate hydraulic fracturing close to mine workings during a controlled roof’s collapse to prevent it from hanging, and the formation of impervious screens to reduce airflow from the mine to degassing boreholes through the rock, for example.


Sign in / Sign up

Export Citation Format

Share Document