scholarly journals Cognitive-Load Theory: Methods to Manage Working Memory Load in the Learning of Complex Tasks

2020 ◽  
Vol 29 (4) ◽  
pp. 394-398
Author(s):  
Fred Paas ◽  
Jeroen J. G. van Merriënboer

Cognitive-load researchers attempt to engineer the instructional control of cognitive load by designing methods that substitute productive for unproductive cognitive load. This article highlights proven and new methods to achieve this instructional control by focusing on the cognitive architecture used by cognitive-load theory and aspects of the learning task, the learner, and the learning environment.

Author(s):  
Patricia M. Boechler

Cognitive load theory (CLT) is currently the most prominent cognitive theory pertaining to instructional design and is referred to in numerous empirical articles in the educational literature (for example, Brünken, Plass, & Leutner, 2003; Chandler & Sweller, 1991; Paas, Tuovinen, Tabbers, & Van Gerven, 2003; Sweller, van Merri¸nboer, & Paas, 1998). CLT was developed to assist educators in designing optimal presentations of information to encourage learning. CLT has also been extended and applied to the design of educational hypermedia and multimedia (Mayer & Moreno, 2003). The theory is built around the idea that the human cognitive architecture has inherent limitations related to capacity, in particular, the limitations of human working memory. As Sweller et al. (pp. 252-253) state: The implications of working memory limitations on instructional design cannot be overstated. All conscious cognitive activity learners engage in occurs in a structure whose limitations seem to preclude all but the most basic processes. Anything beyond the simplest cognitive activities appear to overwhelm working memory. Prima facie, any instructional design that flouts or merely ignores working memory limitations inevitably is deficient. It is this factor that provides a central claim to cognitive load theory. In order to understand the full implications of cognitive load theory, an overview of the human memory system is necessary.


Author(s):  
Ouhao Chen ◽  
Slava Kalyuga

In classroom, student learning is affected by multiple factors that influence information processing. Working memory with its limited capacity and duration plays a key role in learner ability to process information and, therefore, is critical for student performance. Cognitive load theory, based on human cognitive architecture, focuses on the instructional implications of relations between working memory and learner knowledge base in long-term memory. The ultimate goal of this theory is to generate effective instructional methods that allow managing students' working memory load to optimize their learning, indicating the relations between the form of instructional design and the function of instructional design. This chapter considers recent additions to the theory based on working memory resources depletion that occurs after exerting significant cognitive effort and reverses after a rest period. The discussed implications for instructional design include optimal sequencing of learning and assessment tasks using spaced and massed practice tasks, immediate and delayed tests.


Author(s):  
Rissa Prima Kurniawati

<p>Multimedia is media that combine two or more elements are composed of text, graphics, images, photographs, audio, video, and animation are integrated. In multimedia-assisted learning, students are given the opportunity to learn not only of learning resources such as teachers, but give the opportunity to students to develop better cognitive, creative, and innovative. Cognitive Load Theory is a theory that was introduced as a teaching theory based on the knowledge of human cognitive architecture that we have. The main principle of Cognitive Load Theory is the quality of learning is enhanced if attention is concentrated on the role and limitations of working memory. Three cognitive load in working memory, which is intrinsic cognitive load, Germany cognitive load, and extraneous cognitive load.</p><p> </p><p><strong>Keywords</strong>: Multimedia, Cognitive Load Theory, intrinsic cognitive load,<strong> </strong>Germany cognitive load, and extraneous cognitive load.</p><p> </p>


2011 ◽  
pp. 3280-3284
Author(s):  
P. M. Boechler

Cognitive load theory (CLT) is currently the most prominent cognitive theory pertaining to instructional design and is referred to in numerous empirical articles in the educational literature (for example, Brünken, Plass, & Leutner, 2003; Chandler & Sweller, 1991; Paas, Tuovinen, Tabbers, & Van Gerven, 2003; Sweller, van Merri¸nboer, & Paas, 1998). CLT was developed to assist educators in designing optimal presentations of information to encourage learning. CLT has also been extended and applied to the design of educational hypermedia and multimedia (Mayer & Moreno, 2003). The theory is built around the idea that the human cognitive architecture has inherent limitations related to capacity, in particular, the limitations of human working memory. As Sweller et al. (pp. 252-253) state: The implications of working memory limitations on instructional design cannot be overstated. All conscious cognitive activity learners engage in occurs in a structure whose limitations seem to preclude all but the most basic processes. Anything beyond the simplest cognitive activities appear to overwhelm working memory. Prima facie, any instructional design that flouts or merely ignores working memory limitations inevitably is deficient. It is this factor that provides a central claim to cognitive load theory. In order to understand the full implications of cognitive load theory, an overview of the human memory system is necessary.


2010 ◽  
Vol 22 (3) ◽  
pp. 437-446 ◽  
Author(s):  
Jane Klemen ◽  
Christian Büchel ◽  
Mira Bühler ◽  
Mareike M. Menz ◽  
Michael Rose

Attentional interference between tasks performed in parallel is known to have strong and often undesired effects. As yet, however, the mechanisms by which interference operates remain elusive. A better knowledge of these processes may facilitate our understanding of the effects of attention on human performance and the debilitating consequences that disruptions to attention can have. According to the load theory of cognitive control, processing of task-irrelevant stimuli is increased by attending in parallel to a relevant task with high cognitive demands. This is due to the relevant task engaging cognitive control resources that are, hence, unavailable to inhibit the processing of task-irrelevant stimuli. However, it has also been demonstrated that a variety of types of load (perceptual and emotional) can result in a reduction of the processing of task-irrelevant stimuli, suggesting a uniform effect of increased load irrespective of the type of load. In the present study, we concurrently presented a relevant auditory matching task [n-back working memory (WM)] of low or high cognitive load (1-back or 2-back WM) and task-irrelevant images at one of three object visibility levels (0%, 50%, or 100%). fMRI activation during the processing of the task-irrelevant visual stimuli was measured in the lateral occipital cortex and found to be reduced under high, compared to low, WM load. In combination with previous findings, this result is suggestive of a more generalized load theory, whereby cognitive load, as well as other types of load (e.g., perceptual), can result in a reduction of the processing of task-irrelevant stimuli, in line with a uniform effect of increased load irrespective of the type of load.


2016 ◽  
Vol 2 (4) ◽  
pp. 131-138 ◽  
Author(s):  
Michael Meguerdichian ◽  
Katie Walker ◽  
Komal Bajaj

This analysis explores how to optimise knowledge transfer in healthcare simulation by applying cognitive load theory to curriculum design and delivery for both novice and expert learners. This is particularly relevant for interprofessional learning which is team-based, as each participant comes to the simulation experience with different levels of expertise. Healthcare simulation can offer opportunities to create complex and dynamic experiences that replicate real clinical situations. Understanding Cognitive Load Theory can foster the acquisition of complex knowledge, skills and abilities required to deliver excellence in patient care without overwhelming a learner's ability to handle new materials due to working memory limitations. The 2 aspects of working memory that will be explored in this paper are intrinsic load and extrinsic load. These will be addressed in terms of the learner's level of expertise and how to consider these elements to enhance the learning environment in simulation scenario development and delivery. By applying the concepts of Cognitive Load Theory, this paper offers educators a method to tailor their curricula to navigate working memory and optimise the opportunity for knowledge transfer.


2021 ◽  
Vol 20 (1) ◽  
pp. 38-46
Author(s):  
Ouhao Chen ◽  
Slava Kalyuga

Cognitive load theory (CLT) uses working memory resources depletion to explain the superiority of spaced learning, predicting that working memory resources will be less taxed if there are resting/spacing periods inserted between learning tasks, in comparison to learning from the same tasks in a single session. This article uses the working memory resources depletion effect, as a factor, to investigate the hypothesis that delayed testing would show superior results to immediate testing on math tasks for primary students in Singapore, as participants' working memory resources might be restored because of the resting between the immediate and delayed tests. Results confirmed higher performance on the delayed test than on the immediate test, as well as more working memory resources available for the delayed test.


2016 ◽  
pp. 1850-1862
Author(s):  
Robin Deegan

Mobile learning is cognitively demanding and frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where these fields interact and presents an experiment which determined that several sources of cognitive load can be measured simultaneously by the learner. The experiment also looked at the interaction between these cognitive load types and found that distraction did not affect the performance or cognitive load associated with a learning task but it did affect the perception of the cognitive load associated with using the application interface. This paper concludes by suggesting ways in which mobile learning can benefit by developing cognitive load aware systems that could detect and change the difficulty of the learning task based on the cognitive state of the learner.


Sign in / Sign up

Export Citation Format

Share Document