A novel local radial basis function collocation method for multi-dimensional piezoelectric problems

Author(s):  
Amir Noorizadegan ◽  
Der Liang Young ◽  
Chuin-Shan Chen

The local radial basis function collocation method (LRBFCM), a strong-form formulation of the meshless numerical method, is proposed for solving piezoelectric medium problems. The proposed numerical algorithm is based on the local Kansa method using variable shape parameter. We introduce a novel technique for the determination of shape parameter in the LRBFCM, which leads to greater accuracy, and simplicity. The implemented algorithm is first verified with a 2D Poisson equation. Then, we employed LRBFCM in a numerical simulation for 2D and 3D piezoelectric problems involving mutual coupling of the electric field and elastodynamic equations for mechanical field. The presented meshless method is verified using corresponding results obtained from the finite element method and moving least squares meshless local Petrov–Galerkin method. In particular, the 2D piezoelectric problem is verified with an exact solution.

2014 ◽  
Vol 1082 ◽  
pp. 433-436
Author(s):  
Ying Tao Chen ◽  
Song Xiang ◽  
Wei Ping Zhao

Free vibration of simply laminated composite plates is studied by the global collocation method based on inverse multiquadrics radial basis function. The choice of shape parameter of radial basis function has the important effect on the accuracy of meshless radial basis function collocation method. Genetic algorithm is used to optimize the shape parameter of inverse multiquadrics radial basis function. The natural frequencies of simply supported laminated composite plates are calculated using the inverse multiquadrics radial basis function with optimal shape parameter and compared with the analytical solutions.


2014 ◽  
Vol 709 ◽  
pp. 121-124 ◽  
Author(s):  
Ying Tao Chen ◽  
Song Xiang ◽  
Wei Ping Zhao

Deflection and stress of simply functionally graded plates are calculated by the meshless collocation method based on generalized multiquadrics radial basis function. The generalized multiquadric radial basis function has the shape parameter c and exponent which have the important effect in the accuracy of the approximation. The deflection and stress of simply functionally graded plates are calculated using the generalized multiquadrics with optimal shape parameter and exponent which is optimized by the genetic algorithm.


2021 ◽  
Vol 13 (01) ◽  
pp. 2150007
Author(s):  
Shahram Hosseini ◽  
Gholamhossein Rahimi

This paper investigates the nonlinear bending analysis of a hyperelastic plate via neo-Hookean strain energy function. The first-order shear deformation plate theory (FSDPT) is used for the formulation of the field variables. Also, the nonlinear Lagrangian strains are considered via the right Cauchy–Green tensor. The governing equations and nonlinear boundary conditions are derived using Euler–Lagrange relations. The meshless collocation method based on radial basis function is used to discretize the governing equations of the hyperelastic plate. Square and circular plates are studied to evaluate the accuracy of the meshless collocation method based on thin-plate spline (TPS) and multiquadric (MQ) and logarithmic thin-plate spline (LTPS) radial basis function. Also, the results of the meshless method are compared to those of the finite element method. In some cases, the meshless method is more efficient than the finite element method due to no meshing. The linear and nonlinear natural boundary conditions are directly imposed on the stiffness matrix and are compared to each other. The maximum differences between linear and nonlinear natural boundary conditions are 1.43%. The von-Mises stress using meshless collocation method based on TPS basis function is compared to those of the finite element method.


Sign in / Sign up

Export Citation Format

Share Document