Cobot And Robot Risk Assessment (CARRA) method: an Automation Level-Based Safety Assessment Tool to Improve Fluency in Safe Human Cobot/Robot Interaction

Author(s):  
Richard T. Stone ◽  
Shamika Pujari ◽  
Ahmad Mumani ◽  
Colten Fales ◽  
Mohammed Ameen

Cobots and robots are integral to automated manufacturing operations. Although there are many studies in the field of industrial robots and cobots to make them safer the number of OSHA accidents due to cobots and robots has not decreased. Even though these cobots are considered inherently safe, they open more probability for accidents because they are not caged. Therefore, it is necessary for the manufacturing industries using cobots to consider the risk involved in human cobot interaction and the ways to attain safety and lower the risk of injury before installing cobots on assembly lines. A user-centric tool was developed to perform an ergonomic risk assessment using process- failure mode effect analysis for different automation levels in human-cobot interaction. The tool suggests recommended actions and various options to eliminate physical injuries. The results provide insights about safety analysis that can be used by manufacturers to improve safe human cobot interaction.

2014 ◽  
Vol 564 ◽  
pp. 72-76
Author(s):  
Shukriah Abdullah ◽  
Aziz Abdul Faieza

Headlamp assembly entailed a complex assembly process and error in assembled can result in technical problem and higher reject rate at the end of the assembly process. A study has been conducted, in one of the automotive headlamp assembly in Malaysia, where there are numerous defect detected during the assembly process, such as metal spacing missing, wrong model housing, wrong sticker affix, wrong orientation with a total of 80% defects detected. Currently the headlamps are assembled with no dimensional control, results in high physical nonconformity product. The main objective of this project is to identify potential failure in headlamp assembly process. The approach used was risk assessment tool which is Process Failure Mode and Effect. This work also developed the corrective action plan for accurate ranking of Failure Modes by Risk Priority Number-based method and implement it to the process assembly. The result showed that there was increased of 5% in preventive action and 4% increment of the detection action


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 12
Author(s):  
Marcello Braglia ◽  
Davide Castellano ◽  
Roberto Gabbrielli ◽  
Leonardo Marrazzini

The purpose of this paper is to propose a novel process failure mode and effect analysis (PFMEA) approach for the reliable design of assembly activities to prevent product defects due to errors during the assembly of complex products. PFMEA is approached as an integrated method that, in addition to implementing recommended actions, supports the design of worksheets, equipment, and layout of the assembly lines of complex systems, early in the design phase of the product. As a result, the innovative design-job element sheets (D-JESs), which report work instructions to the operator for assembly cycles, are defined before the design of the production and assembly process. The modification of the PFMEA structure, the implementation of proper recommended actions, and the designs of D-JESs, equipment, and assembly layout, early in the design phase of the product, are the novel contributions of the paper. The integrated method assures to effectively design the assembly process directly during the product design to avoid errors that could promote dissatisfaction of the end-users. It is practical to use and does not require large investments, implementation of new technologies, or complex additional training. Its practical application is demonstrated using a case study concerning a manufacturer of train wagons via manual assembly lines.


Author(s):  
Marek Vagas

Urgency of the research. Automated workplaces are growing up in present, especially with implementation of industrial robots with feasibility of various dispositions, where safety and risk assessment is considered as most important issues. Target setting. The protection of workers must be at the first place, therefore safety and risk assessment at automated workplaces is most important problematic, which had presented in this article Actual scientific researches and issues analysis. Actual research is much more focused at standard workplaces without industrial robots. So, missing of information from the field of automated workplaces in connection with various dispositions can be considered as added value of article. Uninvestigated parts of general matters defining. Despite to lot of general safety instructions in this area, still is missed clear view only at automated workplace with industrial robots. The research objective. The aim of article is to provide general instructions directly from the field of automated workplaces The statement of basic materials. For success realization of automated workplace is good to have a helping hand and orientation requirements needed for risk assessment at the workplace. Conclusions. The results published in this article increase the awareness and information of such automated workplaces, together with industrial robots. In addition, presented general steps and requirements helps persons for better realization of these types of workplaces, where major role takes an industrial robot. Our proposed solution can be considered as relevant base for risk assessment such workplaces with safety fences or light barriers.


2020 ◽  
Vol 1 (1) ◽  
pp. 162-173
Author(s):  
Dinesh Kumar Kushwaha ◽  
◽  
Dilbagh Panchal ◽  
Anish Sachdeva ◽  
◽  
...  

Failure Mode Effect Analysis (FMEA) is popular and versatile approach applicable to risk assessment and safety improvement of a repairable engineering system. This method encompasses various fields such as manufacturing, healthcare, paper mill, thermal power industry, software industry, services, security etc. in terms of its application. In general, FMEA is based on Risk Priority Number (RPN) score which is found by product of probability of Occurrence (O), Severity of failure (S) and Failure Detection (D). As human judgement is approximate in nature, the accuracy of data obtained from FMEA members depend on degree of subjectivity. The subjective knowledge of members not only contains uncertainty but hesitation too which in turn, affect the results. Fuzzy FMEA considers uncertainty and vagueness of the data/ information obtained from experts. In order to take into account, the hesitation of experts and vague concept, in the present work we propose integrated framework based on Intuitionistic Fuzzy- Failure Mode Effect Analysis (IF-FMEA) and IF-Technique for Order Preference by Similarity to Ideal Solution (IF-TOPSIS) techniques to rank the listed failure causes. Failure cause Fibrizer (FR) was found to be the most critical failure cause with RPN score 0.500. IF-TOPSIS has been implemented within IF-FMEA to compare and verify ranking results obtained by both the IF based approaches. The proposed method was presented with its application for examining the risk assessment of cutting system in sugar mill industry situated in western Uttar Pradesh province of India. The result would be useful for the plant maintenance manager to fix the best maintenance schedule for improving availability of cutting system.


Sign in / Sign up

Export Citation Format

Share Document