Early detection of bearing faults using minimum entropy deconvolution adjusted and zero frequency filter

2021 ◽  
pp. 107754632098636
Author(s):  
Keshav Kumar ◽  
Sumitra Shukla ◽  
Sachin K Singh

A method based on minimum entropy deconvolution with convolution adjustment and zero frequency filter is presented for the identification of weak faults in rolling element bearings. Localized fault present in rolling element bearings causes periodic impulses in the bearing vibration signal. The zero frequency filtering of the bearing vibration signal keeps only the localized disturbances at the impulse locations while attenuating the non-impulsive components of the signal. The effectiveness of zero frequency filtering depends on the strength of impulses present in the measured faulty bearing signal in time domain. In the present work, Minimum entropy deconvolution adjusted is used as a preprocessor to improve the strength of impulses in the measured time-domain bearing signal. The effectiveness of the proposed algorithm is tested with simulated signals for the faulty bearing vibration at different levels of added Gaussian noise. The algorithm is also validated using experimental bearing vibration dataset. Results from the proposed algorithm are compared with the results of the zero frequency filter and local mean subtraction-based technique for rolling element bearings’ fault identification. The proposed algorithm performs better detection in case of a weak fault signal.

2020 ◽  
pp. 107754632093819
Author(s):  
Ji Fan ◽  
Yongsheng Qi ◽  
Xuejin Gao ◽  
Yongting Li ◽  
Lin Wang

The rolling element bearings used in rotating machinery generally include multiple coexisting defects. However, individual defect–induced signals of bearings simultaneously arising from multiple defects are difficult to extract from measured vibration signals because the impulse-like fault signals are very weak, and the vibration signal is commonly affected by the transmission path and various sources of interference. This issue is addressed in this study by proposing a new compound fault feature extraction scheme. Vibration signals are first preprocessed using resonance-based signal sparse decomposition to obtain the low-resonance component of the signal, which contains the information related to the transient fault–induced impulse signals, and reduce the interference of discrete harmonic signal components and noise. The objective used for adaptively selecting the optimal resonance-based signal sparse decomposition parameters adopts the ratio of permutation entropy to the frequency domain kurtosis, as a new comprehensive index, and the optimization is conducted using the cuckoo search algorithm. Subsequently, we apply multipoint sparsity to the low-resonance component to automatically determine the possible number of impulse signals and their periods according to the peak multipoint sparsity values. This enables the targeted extraction and isolation of fault-induced impulse signal features by multipoint optimal minimum entropy deconvolution adjustment. Finally, the envelope spectrum of the filtered signal is used to identify the individual faults. The effectiveness of the proposed scheme is verified by its application to both simulated and experimental compound bearing fault vibration signals with strong interference, and its advantages are confirmed by comparisons of the results with those of an existing state-of-the-art method.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Guoping An ◽  
Qingbin Tong ◽  
Yanan Zhang ◽  
Ruifang Liu ◽  
Weili Li ◽  
...  

Reliable fault diagnosis of the rolling element bearings highly relies on the correct extraction of fault-related features from vibration signals in time-frequency analysis. However, considering the nonlinear, nonstationary characteristics of vibration signals, the extraction of fault features hidden in the heavy noise has become a challenging task. Variable mode decomposition (VMD) is an adaptive, completely nonrecursive method of mode variation and signal processing. This paper analyzes the advantages of VMD compared with EMD in robustness of against noise, overcoming the end effect and mode aliasing. The signal decomposition performance of VMD algorithm largely depends on the selection of mode number k and bandwidth control parameter α. To realize the adaptability of influence parameters and the improvement of decomposition accuracy, a parameter-optimized VMD method is presented. The random frog leaping algorithm (SFLA) is used to search the optimal combination of influence parameters, and the mode number and bandwidth control parameters are set according to the search results. A multiobjective evaluation function is constructed to select the optimal mode component. The envelope spectrum technique is used to analyze the optimal mode component. The proposed method is evaluated by simulation and practical bearing vibration signals under different conditions. The results show that the proposed method can improve the decomposition accuracy of the signal and the adaptability of the influence parameters and realize the effective extraction of the bearing vibration signal.


2021 ◽  
pp. 107754632110161
Author(s):  
Aref Aasi ◽  
Ramtin Tabatabaei ◽  
Erfan Aasi ◽  
Seyed Mohammad Jafari

Inspired by previous achievements, different time-domain features for diagnosis of rolling element bearings are investigated in this study. An experimental test rig is prepared for condition monitoring of angular contact bearing by using an acoustic emission sensor for this purpose. The acoustic emission signals are acquired from defective bearing, and the sensor takes signals from defects on the inner or outer race of the bearing. By studying the literature works, different domains of features are classified, and the most common time-domain features are selected for condition monitoring. The considered features are calculated for obtained signals with different loadings, speeds, and sizes of defects on the inner and outer race of the bearing. Our results indicate that the clearance, sixth central moment, impulse, kurtosis, and crest factors are appropriate features for diagnosis purposes. Moreover, our results show that the clearance factor for small defects and sixth central moment for large defects are promising for defect diagnosis on rolling element bearings.


2002 ◽  
Vol 8 (3) ◽  
pp. 321-335 ◽  
Author(s):  
Zhidong Chen ◽  
Chris K. Mechefske

This paper reports the results of an investigation in which a Prony model based method is developed. The method shows potential for analysing transient vibration signals. An example is included that shows how the procedure was employed to analyse the transient vibration signals created from faulty low speed rolling element bearings. Spectral plots generated by applying the procedure to very short data samples, as well as trending parameters based on these spectral estimations and Prony parameters, are presented. An equation was also derived to quantitatively determine the fault status. It is shown that application of the Prony model based method has the potential to be an effective as well as efficient machine condition monitoring and diagnostic tool where short duration transient vibration signals are being generated.


Sign in / Sign up

Export Citation Format

Share Document