bandwidth control
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 40)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Vol 504 ◽  
pp. 127461
Author(s):  
J.J. Miguel Varga ◽  
Jon Lasa-Alonso ◽  
Martin Molezuelas-Ferreras ◽  
Nora Tischler ◽  
Gabriel Molina-Terriza

Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Yoshitaka Kawasugi ◽  
Hiroshi M. Yamamoto

The physics of quantum many-body systems have been studied using bulk correlated materials, and recently, moiré superlattices formed by atomic bilayers have appeared as a novel platform in which the carrier concentration and the band structures are highly tunable. In this brief review, we introduce an intermediate platform between those systems, namely, a band-filling- and bandwidth-tunable electric double-layer transistor based on a real organic Mott insulator κ-(BEDT-TTF)2Cu[N(CN)2]Cl. In the proximity of the bandwidth-control Mott transition at half filling, both electron and hole doping induced superconductivity (with almost identical transition temperatures) in the same sample. The normal state under electric double-layer doping exhibited non-Fermi liquid behaviors as in many correlated materials. The doping levels for the superconductivity and the non-Fermi liquid behaviors were highly doping-asymmetric. Model calculations based on the anisotropic triangular lattice explained many phenomena and the doping asymmetry, implying the importance of the noninteracting band structure (particularly the flat part of the band).


Author(s):  
Nickolas Littman ◽  
Steven G. O'Keefe ◽  
Amir Galehdar ◽  
Hugo G. Espinosa ◽  
David V. Thiel

Abstract Frequency-selective surfaces (FSSs) have applications across multiple disciplines due to their unique electromagnetic properties. This paper investigates the use of both rounded square loops (RSLs), and simple loop type dual elements arranged in unique patterns, to control the transmission and reflection bandwidth and resonant frequencies over KU and K frequency bands supported by equivalent circuit models (ECMs). The FSSs were fabricated using laser engraving to create conductive loop type elements on a thin, flexible and optically transparent Mylar substrate (relative permittivity of 2.7 and thickness of 65m). The frequency response of the surfaces are controlled through the element self-inductance and capacitive coupling with neighbouring elements. This work shows that different arrangements result in the formation of multiple distinct resonances. The theoretical and experimental results were in good agreement where rounded squares and dual element arrays were employed to create broadband and multiband band-stop FSSs. A polarization sensitive surface exhibited stop-bands at 12GHz and 16GHz in transverse electric polarization and a stop-band at 14.4GHz in transverse magnetic polarization. This technique can be applied to any periodic array through careful selection of the individual elements in the array, as well as their arrangement.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Wu ◽  
Yuan Fang ◽  
Peng Li ◽  
Zhiguang Xiao ◽  
Hao Zheng ◽  
...  

AbstractThe 4f-electron delocalization plays a key role in the low-temperature properties of rare-earth metals and intermetallics, and it is normally realized by the Kondo coupling between 4f and conduction electrons. Due to the large Coulomb repulsion of 4f electrons, the bandwidth-control Mott-type delocalization, commonly observed in d-electron systems, is difficult in 4f-electron systems and remains elusive in spectroscopic experiments. Here we demonstrate that the bandwidth-control orbital-selective delocalization of 4f electrons can be realized in epitaxial Ce films by thermal annealing, which results in a metastable surface phase with reduced layer spacing. The quasiparticle bands exhibit large dispersion with exclusive 4f character near $$\bar{{{\Gamma }}}$$ Γ ¯ and extend reasonably far below the Fermi energy, which can be explained from the Mott physics. The experimental quasiparticle dispersion agrees well with density-functional theory calculation and also exhibits unusual temperature dependence, which could arise from the delicate interplay between the bandwidth-control Mott physics and the coexisting Kondo hybridization. Our work opens up the opportunity to study the interaction between two well-known localization-delocalization mechanisms in correlation physics, i.e., Kondo vs Mott, which can be important for a fundamental understanding of 4f-electron systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Guoping An ◽  
Qingbin Tong ◽  
Yanan Zhang ◽  
Ruifang Liu ◽  
Weili Li ◽  
...  

Reliable fault diagnosis of the rolling element bearings highly relies on the correct extraction of fault-related features from vibration signals in time-frequency analysis. However, considering the nonlinear, nonstationary characteristics of vibration signals, the extraction of fault features hidden in the heavy noise has become a challenging task. Variable mode decomposition (VMD) is an adaptive, completely nonrecursive method of mode variation and signal processing. This paper analyzes the advantages of VMD compared with EMD in robustness of against noise, overcoming the end effect and mode aliasing. The signal decomposition performance of VMD algorithm largely depends on the selection of mode number k and bandwidth control parameter α. To realize the adaptability of influence parameters and the improvement of decomposition accuracy, a parameter-optimized VMD method is presented. The random frog leaping algorithm (SFLA) is used to search the optimal combination of influence parameters, and the mode number and bandwidth control parameters are set according to the search results. A multiobjective evaluation function is constructed to select the optimal mode component. The envelope spectrum technique is used to analyze the optimal mode component. The proposed method is evaluated by simulation and practical bearing vibration signals under different conditions. The results show that the proposed method can improve the decomposition accuracy of the signal and the adaptability of the influence parameters and realize the effective extraction of the bearing vibration signal.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 109
Author(s):  
Youming Zhang ◽  
Xusheng Tang ◽  
Zhennan Wei ◽  
Kaiye Bao ◽  
Nan Jiang

This paper presents a Ku-band fractional-N frequency synthesizer with adaptive loop bandwidth control (ALBC) to speed up the lock settling process and meanwhile ensure better phase noise and spur performance. The theoretical analysis and circuits implementation are discussed in detail. Other key modules of the frequency synthesizer such as broadband voltage-controlled oscillator (VCO) with auto frequency calibration (AFC) and programable frequency divider/charge pump/loop filter are designed for integrity and flexible configuration. The proposed frequency synthesizer is fabricated in 0.13 μm CMOS technology occupying 1.14 × 1.18 mm2 area including ESD/IOs and pads, and the area of the ALBC is only 55 × 76 μm2. The out frequency can cover from 11.37 GHz to 14.8 GHz with a frequency tuning range (FTR) of 26.2%. The phase noise is −112.5 dBc/Hz @ 1 MHz and −122.4 dBc/Hz @ 3 MHz at 13 GHz carrier frequency. Thanks to the proposed ALBC, the lock-time can be shortened by about 30% from about 36 μs to 24 μs. The chip area and power consumption of the proposed ALBC technology are slight, but the beneficial effect is significant.


Sign in / Sign up

Export Citation Format

Share Document