An optimal sensor/actuator placement method for flexible structures considering spatially varying disturbances

2021 ◽  
pp. 107754632110358
Author(s):  
Runze Ding ◽  
Ding Chenyang ◽  
Xu Yunlang ◽  
Xiaofeng Yang

Disturbances acting on flexible structures at spatially varying locations instead of fixed points may lead to deteriorated vibration control performance. To tackle this problem, this article presents an optimal sensor/actuator placement method, in which the closed-loop spatial [Formula: see text] norm is employed as the optimization criterion. In addition, a new way to calculate the spatial [Formula: see text] norm is proposed, which is independent of the modal orthogonality assumption in previous research. An optimization framework is established to optimize sensor/actuator placement by minimizing the closed-loop spatial [Formula: see text] norm using the genetic algorithm. Comprehensive numerical simulations are implemented on a fixed-fixed plate to validate the proposed method. Results show that magnitude of vibrations is reduced and decays faster after the optimization, which indicates that the proposed method markedly improves control performance when spatially varying disturbances exist.

Author(s):  
Morteza Shahravi ◽  
Milad Azimi

This paper presents a study concerning the vibration control of smart flexible sub-structures of satellite during attitude maneuver. A comparison between the collocated and non-collocated piezoceramic patches acting as sensors and actuators is performed in order to investigate their effectiveness to suppress vibrations in flexible substructures. A rigid hub with two elastic appendages containing surface bounded piezoelectric patches is being considered as satellite model. Finite element method and Lagrangian formulation are used for derivation of system equations of motion. Stability proof of the overall closed-loop system is given via Lyapunov analysis. The numerical simulations verify the results of the study.


1990 ◽  
Vol 112 (3) ◽  
pp. 407-410 ◽  
Author(s):  
H. Baruh

This paper presents a recursive method to accomplish pole placement for control of large-order vibrating systems. The pole placement is based on matrix perturbation theory, where the controls are considered as a perturbation on the uncontrolled system. The difference between the open-loop poles and the desired closed-loop poles is divided into regions small enough to maintain validity of the perturbation assumption. Control gains are then calculated in each region, resulting in a stepwise design.


Sign in / Sign up

Export Citation Format

Share Document