The Centrifugal Delayed Resonator as a Tunable Torsional Vibration Absorber for Multi-Degree-of-Freedom Systems

1999 ◽  
Vol 5 (2) ◽  
pp. 299-322 ◽  
Author(s):  
Martin Hosek ◽  
Nejat Olgac ◽  
Hakan Elmali
2021 ◽  
Author(s):  
Yu SUN ◽  
Jinsong Zhou ◽  
Dao Gong ◽  
Yuanjin Ji

Abstract To absorb the vibration of the carbody of the high-speed train in multiple degrees of freedom, a multi-degree of freedom dynamic vibration absorber (MDOF DVA) is proposed. Installed under the carbody, the natural vibration frequency of the MDOF DVA from each DOF can be designed as a DVA for each single degree of freedom of the carbody. Hence, a 12-DOF model including the main vibration system and a MDOF DVA is established, and the principle of Multi-DOF dynamic vibration absorption is analyzed by combining the design method of single DVA and genetic algorithm. Based on a high-speed train dynamics model including an under-carbody MDOF DVA, the vibration control effect on each DOF of the MDOF DVA is analyzed by the virtual excitation method. Moreover, a high static and low dynamic stiffness (HSLDS) mount is proposed based on a cam–roller–spring mechanism for the installation of the MDOF DVA due to the requirement of the low vertical dynamic stiffness. From the dynamic simulation of a non-linear model in time-domain, the vibration control performance of the MDOF DVA installed with nonlinear HSLDS mount on the carbody is analyzed. The results show that the MDOF DVA can absorb the vibration of the carbody in multiple degrees of freedom effectively, and improve the running ride quality of the vehicle.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Abdollah Javidialesaadi ◽  
Nicholas E. Wierschem

In this study, a novel passive vibration control device, the three-element vibration absorber–inerter (TEVAI) is proposed. Inerter-based vibration absorbers, which utilize a mass that rotates due to relative translational motion, have recently been developed to take advantage of the potential high inertial mass (inertance) of a relatively small mass in rotation. In this work, a novel configuration of an inerter-based absorber is proposed, and its effectiveness at suppressing the vibration of a single-degree-of-freedom system is investigated. The proposed device is a development of two current passive devices: the tuned-mass-damper–inerter (TMDI), which is an inerter-base tuned mass damper (TMD), and the three-element dynamic vibration absorber (TEVA). Closed-form optimization solutions for this device connected to a single-degree-of-freedom primary structure and loaded with random base excitation are developed and presented. Furthermore, the effectiveness of this novel device, in comparison to the traditional TMD, TEVA, and TMDI, is also investigated. The results of this study demonstrate that the TEVAI possesses superior performance in the reduction of the maximum and root-mean-square (RMS) response of the underlying structure in comparison to the TMD, TEVA, and TMDI.


2004 ◽  
Vol 127 (4) ◽  
pp. 341-350 ◽  
Author(s):  
Mehmet Bulent Ozer ◽  
Thomas J. Royston

The most common method to design tuned dynamic vibration absorbers is still that of Den Hartog, based on the principle of invariant points. However, this method is optimal only when attaching the absorber to a single-degree-of-freedom undamped main system. In the present paper, an extension of the classical Den Hartog approach to a multi-degree-of-freedom undamped main system is presented. The Sherman-Morrison matrix inversion theorem is used to obtain an expression that leads to invariant points for a multi-degree-of-freedom undamped main system. Using this expression, an analytical solution for the optimal damper value of the absorber is derived. Also, the effect of location of the absorber in the multi-degree-of-freedom system and the effect of the absorber on neighboring modes are discussed.


Sign in / Sign up

Export Citation Format

Share Document