Transient interior analytical solutions of Lamb’s problem

2019 ◽  
Vol 24 (11) ◽  
pp. 3485-3513 ◽  
Author(s):  
Mohamad Emami ◽  
Morteza Eskandari-Ghadi

The classical three-dimensional Lamb’s problem is considered for an inclined surface point load of Heaviside time dependence. Attention is focused upon the acquisition of the transient elastodynamic analytical solutions for interior points through a unified method of analysis that is valid for arbitrary Lamé constants. The method of elastodynamic potentials is employed jointly with integral transforms to treat the corresponding initial boundary value problem. To derive the time-domain solutions, some integral equations are encountered, the solutions of which are found via a modified version of the Cagniard–Pekeris method. The final solutions are obtained as finite integrals that are amenable to numerical calculations. They are also expressed in the form of Green’s functions. The limit case of infinite time is investigated analytically to derive the closed-form expressions for the limits of the solutions as the temporal variable tends to infinity. As expected, the results are found to be equivalent to Boussinesq–Cerruti solutions in elastostatics. The elastodynamic solutions are also evaluated numerically to plot several time-history diagrams, depicting the transient motions of the interior points, especially of the points close to the boundary so as to illustrate the formation of forced Rayleigh waves at shallow depths within the elastic half-space.

This paper is concerned with the study of transient response of a transversely isotropic elastic half-space under internal loadings and displacement discontinuities. Governing equations corresponding to two-dimensional and three-dimensional transient wave propagation problems are solved by using Laplace–Fourier integral transforms and Laplace−Hankel integral transforms, respectively. Explicit general solutions for displacements and stresses are presented. Thereafter boundary-value problems corresponding to internal transient loadings and transient displacement discontinuities are solved for both two-dimensional and three-dimensional problems. Explicit analytical solutions for displacements and stresses corresponding to internal loadings and displacement discontinuities are presented. Solutions corresponding to arbitrary loadings and displacement discontinuities can be obtained through the application of standard analytical procedures such as integration and Fourier expansion to the fundamental solutions presented in this article. It is shown that the transient response of a medium can be accurately computed by using a combination of numerical quadrature and a numerical Laplace inversion technique for the evaluation of integrals appearing in the analytical solutions. Comparisons with existing transient solutions for isotropic materials are presented to confirm the accuracy of the present solutions. Selected numerical results for displacements and stresses due to a buried circular patch load are presented to portray some features of the response of a transversely isotropic elastic half-space. The fundamental solutions presented in this paper can be used in the analysis of a variety of transient problems encountered in disciplines such as seismology, earthquake engineering, etc. In addition these fundamental solutions appear as the kernel functions in the boundary integral equation method and in the displacement discontinuity method.


2009 ◽  
Vol 06 (03) ◽  
pp. 577-614 ◽  
Author(s):  
GILLES CARBOU ◽  
BERNARD HANOUZET

The electromagnetic wave propagation in a nonlinear medium is described by the Kerr model in the case of an instantaneous response of the material, or by the Kerr–Debye model if the material exhibits a finite response time. Both models are quasilinear hyperbolic and are endowed with a dissipative entropy. The initial-boundary value problem with a maximal-dissipative impedance boundary condition is considered here. When the response time is fixed, in both the one-dimensional and two-dimensional transverse electric cases, the global existence of smooth solutions for the Kerr–Debye system is established. When the response time tends to zero, the convergence of the Kerr–Debye model to the Kerr model is established in the general case, i.e. the Kerr model is the zero relaxation limit of the Kerr–Debye model.


2012 ◽  
Vol 17 (3) ◽  
pp. 312-326
Author(s):  
Neringa Klovienė

Third order initial boundary value problem is studied in a bounded plane domain σ with C4 smooth boundary ∂σ. The existence and uniqueness of the solution is proved using Galerkin approximations and a priory estimates. The problem under consideration appear as an auxiliary problem by studying a second grade fluid motion in an infinite three-dimensional pipe with noncircular cross-section.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 181
Author(s):  
Evgenii S. Baranovskii

This paper deals with an initial-boundary value problem for the Navier–Stokes–Voigt equations describing unsteady flows of an incompressible non-Newtonian fluid. We give the strong formulation of this problem as a nonlinear evolutionary equation in Sobolev spaces. Using the Faedo–Galerkin method with a special basis of eigenfunctions of the Stokes operator, we construct a global-in-time strong solution, which is unique in both two-dimensional and three-dimensional domains. We also study the long-time asymptotic behavior of the velocity field under the assumption that the external forces field is conservative.


1994 ◽  
Vol 281 ◽  
pp. 159-191 ◽  
Author(s):  
Andreas Dillmann

Based on linear potential theory, the general three-dimensional problem of steady supersonic flow inside quasi-cylindrical ducts is formulated as an initial-boundary-value problem for the wave equation, whose general solution arises as an infinite double series of the Fourier–Bessel type. For a broad class of solutions including the general axisymmetric case, it is shown that the presence of a discontinuity in wall slope leads to a periodic singularity pattern associated with non-uniform convergence of the corresponding series solutions, which thus are unsuitable for direct numerical computation. This practical difficulty is overcome by extending a classical analytical method, viz. Kummer's series transformation. A variety of elementary flow fields is presented, whose complex cellular structure can be qualitatively explained by asymptotic laws governing the propagation of small perturbations on characteristic surfaces.


2011 ◽  
Vol 31 (6-7) ◽  
Author(s):  
Anoop G. Varghese ◽  
Romesh C. Batra

Abstract We studied three-dimensional transient large coupled thermomechanical deformations of a polycarbonate (PC) plate with a through-the-thickness inhomogeneity at its centroid. The PC exhibits strain softening followed by strain hardening and its elastic moduli are taken to be functions of strain rate and temperature. The inhomogeneity is either a void or a region of initial temperature higher than that of the rest of the plate. The nonlinear initial-boundary-value problem is solved numerically by the finite element method. It is found that deformations localize into narrow regions that we call bands. For a plate deformed in tension, the maximum principal stretch within the band is almost twice that of the maximum shear strain and for a plate deformed in shear the two have approximately the same magnitude. For the PC deformed in uniaxial compression, we call the minimum slope of the effective stress vs. the effective strain curve in the strain softening regime as the softening modulus, E s , and find values of E s and the defect strength needed for the deformations to localize. These values are found to be different for the plate deformed in shear from that deformed in tension and the minimum value of E s for the localization of deformation also depends upon the defect type and the defect strength (e.g., the ratio of the major to the minor axes of the elliptic void).


The modifications of the three-dimensional Navier-Stokes equations, which I suggested earlier for the description of viscous fluid flows with large gradients of velocities, are considered. It is proved that the first initial-boundary value problem for these equations in any bounded three-dimensional domain has a compact minimal global B-attractor. Some properties of the attractor are established.


Author(s):  
Arun Raina ◽  
Nathan Sime

The lattice diffusion coefficient of hydrogen in metals is commonly measured by permeation tests. Such tests assume isotropic diffusivity with a set-up which measures permeation flux only along one direction. The measured values of the lattice diffusion coefficient are strongly influenced by the trapping of hydrogen at microstructural defects. These factors lead to highly inaccurate determination of the lattice diffusion coefficient, more so in an anisotropic medium. In this work, we present a three-dimensional (3D) diffusion equation in non-dimensional form for an anisotropic medium with source and sink terms which account for detrapping and trapping of hydrogen. The concentration of hydrogen at lattice and trap sites is assumed to be in a local equilibrium. An initial boundary value problem of the permeation test is formulated and the governing partial differential equation is implemented in a 3D finite-element code. The influence of anisotropic diffusivity on the measurement of lattice diffusion coefficient is shown by numerical simulations. Asymptotic analysis of the governing equation reveals that the lattice diffusion coefficient can only be measured in certain regimes when performing permeation tests at varying temperatures. The nonlinear behaviour of Arrhenius plots of diffusion coefficient versus inverse of temperature due to trapping is analytically and numerically predicted.


Sign in / Sign up

Export Citation Format

Share Document