scholarly journals Identification of Rift Valley Fever Virus Nucleocapsid Protein-RNA Binding Inhibitors Using a High-Throughput Screening Assay

2012 ◽  
Vol 17 (8) ◽  
pp. 1062-1070 ◽  
Author(s):  
Mary Ellenbecker ◽  
Jean-Marc Lanchy ◽  
J. Stephen Lodmell

Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. Currently, there is no proven effective treatment for RVFV infection, and there is no licensed vaccine. Inhibition of RNA binding to the essential viral nucleocapsid (N) protein represents a potential antiviral therapeutic strategy because all of the functions performed by N during infection involve RNA binding. To target this interaction, we developed a fluorescence polarization–based high-throughput drug-screening assay and tested 26 424 chemical compounds for their ability to disrupt an N-RNA complex. From libraries of Food and Drug Administration–approved drugs, druglike molecules, and natural product extracts, we identified several lead compounds that are promising candidates for medicinal chemistry.

2018 ◽  
Vol 56 (6) ◽  
Author(s):  
I. K. Ragan ◽  
A. S. Davis ◽  
D. S. McVey ◽  
J. A. Richt ◽  
R. R. Rowland ◽  
...  

ABSTRACTRift Valley fever virus (RVFV) is a mosquito-borne, zoonotic virus that infects ruminants, including cattle, sheep, goats, camels, and buffalo. Multiplexing diagnostic assays that can simultaneously detect antibodies against multiple RVFV antigens offer a high-throughput test for disease surveillance and vaccine evaluations. We describe the improvement and evaluation of a previously developed fluorescence microsphere immunoassay (FMIA) for the detection of IgG and IgM antibodies against the RVFV glycoprotein (Gn) and the immunogenic nucleocapsid protein (Np). Well-characterized vaccinated and experimentally infected ruminant sera were used for the evaluation of the assay. Recombinant viral proteins were produced and then coupled to polystyrene magnetic beads for analysis using the Luminex MAGPIX system with xMAP technology. The FMIA was performed in parallel with virus neutralization tests. Our results revealed the highest median fluorescence intensity (MFI) values for the detection of IgG antibodies against RVFV Np, indicating that this antigen would be a good candidate for a screening assay. The Np and Gn targets could differentiate infected animals from animals vaccinated with a candidate subunit vaccine formulation based on the RVFV Gn and Gc proteins. The results presented in this report demonstrate that FMIA provides a rapid and robust serological diagnostic tool for the detection of antibodies against RVFV. The targets developed in this assay provide the basis for the development of a companion diagnostic test for an RVFV Gn/Gc subunit vaccine that is capable of differentiating infected from vaccinated animals (DIVA), as well as a multiplex serodiagnostic assay that can simultaneously screen for several ruminant diseases.


2014 ◽  
Vol 58 (12) ◽  
pp. 7405-7415 ◽  
Author(s):  
Mary Ellenbecker ◽  
Jean-Marc Lanchy ◽  
J. Stephen Lodmell

ABSTRACTRift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. There are currently no proven safe and effective treatment options for RVFV infection. Inhibition of RNA binding to RVFV nucleocapsid protein (N) represents an attractive antiviral therapeutic strategy because several essential steps in the RVFV replication cycle involve N binding to viral RNA. In this study, we demonstrate the therapeutic potential of the drug suramin by showing that it functions well as an inhibitor of RVFV replication at multiple stages in human cell culture. Suramin has been used previously to treat trypanosomiasis in Africa. We characterize the dynamic and cooperative nature of N-RNA binding interactions and the dissociation of high-molecular-mass ribonucleoprotein complexes using suramin, which we previously identified as an N-RNA binding inhibitor in a high-throughput screen. Finally, we elucidate the molecular mechanism used by suraminin vitroto disrupt both specific and nonspecific binding events important for ribonucleoprotein formation.


1950 ◽  
Vol 5 (5) ◽  
pp. 243-247
Author(s):  
Minoru MATSUMOTO ◽  
Saburo IWASA ◽  
Motosige ENDO

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0128215 ◽  
Author(s):  
Nazly Shafagati ◽  
Lindsay Lundberg ◽  
Alan Baer ◽  
Alexis Patanarut ◽  
Katherine Fite ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Halima Rhazi ◽  
Najete Safini ◽  
Karima Mikou ◽  
Meryeme Alhyane ◽  
Khalid Omari Tadlaoui ◽  
...  

Abstract Background Animal vaccination is an important way to stop the spread of diseases causing immense damage to livestock and economic losses and the potential transmission to humans. Therefore effective method for vaccine production using simple and inexpensive bioprocessing solutions is very essential. Conventional culture systems currently in use, tend to be uneconomic in terms of labor and time involved. Besides, they offer a limited surface area for growth of cells. In this study, the CelCradle™-500A was evaluated as an alternative to replace conventional culture systems in use such as Cell factories for the production of viral vaccines against small ruminant morbillivirus (PPR), rift valley fever virus (RVF) and lumpy skin disease virus (LSD). Results Two types of cells Vero and primary Lamb Testis cells were used to produce these viruses. The study was done in 2 phases as a) optimization of cell growth and b) virus cultivation. Vero cells could be grown to significantly higher cell densities of 3.04 × 109 using the CelCradle™-500A with a shorter doubling time as compared to 9.45 × 108 cells in Cell factories. This represents a 19 fold increase in cell numbers as compared to seeding vs only 3.7 fold in Cell factories. LT cells achieved modestly higher cell densities of 6.7 × 108 as compared to 6.3 × 108 in Cell factories. The fold change in densities for these cells was 3 fold in the CelCradle™-500A vs 2.5 fold in Cell factories. The titers in the conventional system and the bioreactor were not significantly different. However, the Cell-specific virus yield for rift valley fever virus and lumpy skin disease virus are higher (25 virions/cell for rift valley fever virus, and 21.9 virions/cell for lumpy skin disease virus versus 19.9 virions/cell for rift valley fever virus and 10 virions/cell for lumpy skin disease virus). Conclusions This work represents a novel study for primary lamb testis cell culture in CellCradle™-500A bioreactors. In addition, on account of the high cell densities obtained and the linear scalability the titers could be further optimized using other culture process such us perfusion.


2018 ◽  
Vol 12 (5) ◽  
pp. e0006474 ◽  
Author(s):  
Darci R. Smith ◽  
Sara C. Johnston ◽  
Ashley Piper ◽  
Miriam Botto ◽  
Ginger Donnelly ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document