Free vibration response of sandwich cylindrical shells with functionally graded material face sheets resting on Pasternak foundation

2014 ◽  
Vol 16 (5) ◽  
pp. 511-533 ◽  
Author(s):  
S Kamarian ◽  
M Sadighi ◽  
M Shakeri ◽  
MH Yas
2018 ◽  
Vol 18 (11) ◽  
pp. 1850138 ◽  
Author(s):  
Yueyang Han ◽  
Xiang Zhu ◽  
Tianyun Li ◽  
Yunyan Yu ◽  
Xiaofang Hu

An analytical approach for predicting the free vibration and elastic critical load of functionally graded material (FGM) thin cylindrical shells filled with internal pressured fluid is presented in this study. The vibration of the FGM cylindrical shell is described by the Flügge shell theory, where the internal static pressure is considered as the prestress term in the shell equations. The motion of the internal fluid is described by the acoustic wave equation. The natural frequencies of the FGM cylindrical shell under different internal pressures are obtained with the wave propagation method. The relationship between the internal pressure and the natural frequency of the cylindrical shell is analyzed. Then the linear extrapolation method is employed to obtain the elastic critical load of the FGM cylindrical shell from the condition that the increasing pressure has resulted in zero natural frequency. The accuracy of the present method is verified by comparison with the published results. The effects of gradient index, boundary conditions and structural parameters on the elastic critical load of the FGM cylindrical shell are discussed. Compared with the experimental and numerical analyses based on the external pressure, the present method is simple and easy to carry out.


2012 ◽  
Vol 376 (45) ◽  
pp. 3351-3358 ◽  
Author(s):  
Huijie Shen ◽  
Jihong Wen ◽  
Michael P. Païdoussis ◽  
Dianlong Yu ◽  
Meisam Asgari ◽  
...  

Author(s):  
Piyush Pratap Singh ◽  
Mohammad Sikandar Azam ◽  
Vinayak Ranjan

In the present research article, classical plate theory has been adopted to analyze functionally graded material plate, having out of plane material inhomogeneity, resting on Winkler–Pasternak foundation under different combinations of boundary conditions. The material properties of the functionally graded material plate vary according to power law in the thickness direction. Rayleigh–Ritz method in conjugation with polynomial displacement functions has been used to develop a computationally efficient mathematical model to study free vibration characteristics of the plate. Convergence of frequency parameters (nondimensional natural frequencies) has been attained by increasing the number of polynomials of displacement function. The frequency parameters of the functionally graded material plate obtained by proposed method are compared with the open literature to validate the present model. Firstly, the present model is used to calculate first six natural frequencies of the functionally graded plate under all possible combinations of boundary conditions for the constant value of stiffness of Winkler and Pasternak foundation moduli. Further, the effects of density, aspect ratio, power law exponent, Young’s modulus on frequency parameters of the functionally graded plate resting on Winkler–Pasternak foundation under specific boundary conditions viz. CCCC (all edges clamped), SSSS (all edges simply supported), CFFF (cantilever), SCSF (simply supported-clamped-free) are studied extensively. Furthermore, effect of stiffness of elastic foundation moduli (kp and kw) on frequency parameters are analyzed. It has been observed that effects of aspect ratios, boundary conditions, Young’s modulus and density on frequency parameters are significant at lower value of the power law exponent. It has also been noted from present investigation that Pasternak foundation modulus has greater effect on frequency parameters as compared to the Winkler foundation modulus. Most of the results presented in this paper are novel and may be used for the validation purpose by researchers. Three dimensional mode shapes for the functionally graded plate resting on elastic foundation have also been presented in this article.


Author(s):  
Pawan Kumar ◽  
SP Harsha

Static and free vibration response analysis of a functionally graded piezoelectric material plate under thermal, electric, and mechanical loads is done in this study. The displacement field is acquired using the first-order shear deformation theory, and the Hamilton principle is applied to deduce the motion equations. Temperature-dependent material properties of the functionally graded material plate are used, and these properties follow the power-law distributions along the thickness direction. However, the properties of piezoelectric material layers are assumed to be independent of the electric field and temperature. Finite element formulation for the functionally graded piezoelectric material plate is done using the combined effect of mechanical and electrical loads. The effects of parameters like electrical loading, volume fraction exponent N, and temperature distribution on the static and free vibration characteristics of the functionally graded piezoelectric material square plate are analyzed and presented. Responses are obtained in terms of the centerline deflection, axial stress and the nondimensional natural frequency with various boundary conditions. It is observed that the centerline deflection and nondimensional natural frequency increases as exponent N increases. At the same time, the axial stress decreases with an increase in exponent N. The findings of the static and the free vibration analysis suggest the potential application of the functionally graded piezoelectric material plate in the piezoelectric actuator as well as for sensing deflection in bimorph.


Sign in / Sign up

Export Citation Format

Share Document