Response analysis of hybrid functionally graded material plate subjected to thermo-electro-mechanical loading

Author(s):  
Pawan Kumar ◽  
SP Harsha

Static and free vibration response analysis of a functionally graded piezoelectric material plate under thermal, electric, and mechanical loads is done in this study. The displacement field is acquired using the first-order shear deformation theory, and the Hamilton principle is applied to deduce the motion equations. Temperature-dependent material properties of the functionally graded material plate are used, and these properties follow the power-law distributions along the thickness direction. However, the properties of piezoelectric material layers are assumed to be independent of the electric field and temperature. Finite element formulation for the functionally graded piezoelectric material plate is done using the combined effect of mechanical and electrical loads. The effects of parameters like electrical loading, volume fraction exponent N, and temperature distribution on the static and free vibration characteristics of the functionally graded piezoelectric material square plate are analyzed and presented. Responses are obtained in terms of the centerline deflection, axial stress and the nondimensional natural frequency with various boundary conditions. It is observed that the centerline deflection and nondimensional natural frequency increases as exponent N increases. At the same time, the axial stress decreases with an increase in exponent N. The findings of the static and the free vibration analysis suggest the potential application of the functionally graded piezoelectric material plate in the piezoelectric actuator as well as for sensing deflection in bimorph.

2018 ◽  
Vol 18 (11) ◽  
pp. 1850138 ◽  
Author(s):  
Yueyang Han ◽  
Xiang Zhu ◽  
Tianyun Li ◽  
Yunyan Yu ◽  
Xiaofang Hu

An analytical approach for predicting the free vibration and elastic critical load of functionally graded material (FGM) thin cylindrical shells filled with internal pressured fluid is presented in this study. The vibration of the FGM cylindrical shell is described by the Flügge shell theory, where the internal static pressure is considered as the prestress term in the shell equations. The motion of the internal fluid is described by the acoustic wave equation. The natural frequencies of the FGM cylindrical shell under different internal pressures are obtained with the wave propagation method. The relationship between the internal pressure and the natural frequency of the cylindrical shell is analyzed. Then the linear extrapolation method is employed to obtain the elastic critical load of the FGM cylindrical shell from the condition that the increasing pressure has resulted in zero natural frequency. The accuracy of the present method is verified by comparison with the published results. The effects of gradient index, boundary conditions and structural parameters on the elastic critical load of the FGM cylindrical shell are discussed. Compared with the experimental and numerical analyses based on the external pressure, the present method is simple and easy to carry out.


Author(s):  
Vibhuti B Pandey ◽  
Sandeep K Parashar

This paper investigates the static bending and free vibration analysis of functionally graded piezoelectric material beam under electromechanical loading. The effective material properties of functionally graded piezoelectric material beam are assumed to vary continuously through the thickness direction and are graded according to sigmoid law distribution. Both multi-layered and monomorph models have been considered in the present work. A two-dimensional finite element analysis has been performed using COMSOL Multiphysics® (version 4.2) software. The accuracy of the method was validated by comparing the results with the previous published work. The results presented in the paper shall be useful in the design of functionally graded piezoelectric material beam.


2018 ◽  
Vol 29 (18) ◽  
pp. 3582-3597 ◽  
Author(s):  
Manoj Kumar Singh ◽  
Sanjeev A Sahu ◽  
Abhinav Singhal ◽  
Soniya Chaudhary

In mathematical physics, the Wentzel–Kramers–Brillouin approximation or Wentzel–Kramers–Brillouin method is a technique for finding approximate solutions to linear differential equations with spatially varying coefficients. An attempt has been made to approximate the velocity of surface seismic wave in a piezo-composite structure. In particular, this article studies the dispersion behaviour of Love-type seismic waves in functionally graded piezoelectric material layer bonded between initially stressed piezoelectric layer and pre-stressed piezoelectric half-space. In functionally graded piezoelectric material stratum, theoretical derivations are obtained by the Wentzel–Kramers–Brillouin method where variations in material gradient are taken exponentially. In the upper layer and lower half-space, the displacement components are obtained by employing separation of variables method. Dispersion equations are obtained for both electrically open and short cases. Numerical example and graphical manifestation have been provided to illustrate the effect of influencing parameters on the phase velocity of considered surface wave. Obtained relation has been deduced to some existing results, as particular case of this study. Variation in cut-off frequency and group velocity against the wave number are shown graphically. This study provides a theoretical basis and practical utilization for the development and construction of surface acoustics wave devices.


2019 ◽  
Vol 889 ◽  
pp. 484-488
Author(s):  
Van Thuan Nguyen ◽  
Duy Liem Nguyen

This paper applies the stochastic finite element method (SFEM) to perform the natural frequency analysis of functionally graded material (FGM). It is assumed that the elastic modulus and width of the FGM beam vary along the thickness and width directions following exponential functions. The stochastic eigenvalue problem is solved independently by first-order perturbation and Monte Carlo simulation (MCS) method through changing elastic modulus as spatial randomness. The results show that the first-order perturbation method based SFEM produces a very close value to MCS method.


Sign in / Sign up

Export Citation Format

Share Document