Vibration analysis of a thin functionally graded plate having an out of plane material inhomogeneity resting on Winkler–Pasternak foundation under different combinations of boundary conditions

Author(s):  
Piyush Pratap Singh ◽  
Mohammad Sikandar Azam ◽  
Vinayak Ranjan

In the present research article, classical plate theory has been adopted to analyze functionally graded material plate, having out of plane material inhomogeneity, resting on Winkler–Pasternak foundation under different combinations of boundary conditions. The material properties of the functionally graded material plate vary according to power law in the thickness direction. Rayleigh–Ritz method in conjugation with polynomial displacement functions has been used to develop a computationally efficient mathematical model to study free vibration characteristics of the plate. Convergence of frequency parameters (nondimensional natural frequencies) has been attained by increasing the number of polynomials of displacement function. The frequency parameters of the functionally graded material plate obtained by proposed method are compared with the open literature to validate the present model. Firstly, the present model is used to calculate first six natural frequencies of the functionally graded plate under all possible combinations of boundary conditions for the constant value of stiffness of Winkler and Pasternak foundation moduli. Further, the effects of density, aspect ratio, power law exponent, Young’s modulus on frequency parameters of the functionally graded plate resting on Winkler–Pasternak foundation under specific boundary conditions viz. CCCC (all edges clamped), SSSS (all edges simply supported), CFFF (cantilever), SCSF (simply supported-clamped-free) are studied extensively. Furthermore, effect of stiffness of elastic foundation moduli (kp and kw) on frequency parameters are analyzed. It has been observed that effects of aspect ratios, boundary conditions, Young’s modulus and density on frequency parameters are significant at lower value of the power law exponent. It has also been noted from present investigation that Pasternak foundation modulus has greater effect on frequency parameters as compared to the Winkler foundation modulus. Most of the results presented in this paper are novel and may be used for the validation purpose by researchers. Three dimensional mode shapes for the functionally graded plate resting on elastic foundation have also been presented in this article.

Author(s):  
Md. Imran Ali ◽  
Mohammad Sikandar Azam

This paper presents the formulation of dynamic stiffness matrix for the natural vibration analysis of porous power-law functionally graded Levy-type plate. In the process of formulating the dynamic stiffness matrix, Kirchhoff-Love plate theory in tandem with the notion of neutral surface has been taken on board. The developed dynamic stiffness matrix, a transcendental function of frequency, has been solved through the Wittrick–Williams algorithm. Hamilton’s principle is used to obtain the equation of motion and associated natural boundary conditions of porous power-law functionally graded plate. The variation across the thickness of the functionally graded plate’s material properties follows the power-law function. During the fabrication process, the microvoids and pores develop in functionally graded material plates. Three types of porosity distributions are considered in this article: even, uneven, and logarithmic. The eigenvalues computed by the dynamic stiffness matrix using Wittrick–Williams algorithm for isotropic, power-law functionally graded, and porous power-law functionally graded plate are juxtaposed with previously referred results, and good agreement is found. The significance of various parameters of plate vis-à-vis aspect ratio ( L/b), boundary conditions, volume fraction index ( p), porosity parameter ( e), and porosity distribution on the eigenvalues of the porous power-law functionally graded plate is examined. The effect of material density ratio and Young’s modulus ratio on the natural vibration of porous power-law functionally graded plate is also explained in this article. The results also prove that the method provided in the present work is highly accurate and computationally efficient and could be confidently used as a reference for further study of porous functionally graded material plate.


Author(s):  
MOHAMMAD TALHA ◽  
B. N. SINGH

Nonlinear mechanical bending of functionally graded material (FGM) plates under transverse loads with various boundary conditions are presented. The material properties of the FGM plates are graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The theoretical nonlinear finite element formulations are based on the higher-order shear deformation theory, with a special modification in the transverse displacement in order to estimate the parabolic distribution of transverse shear strains through the plate thickness. The Green–Lagrange nonlinear strain–displacement relation with all higher-order nonlinear strain terms is included to account for the large deflection response of the plate. The fundamental equations for FGM plates with traction-free boundary conditions on the top and bottom faces of the plate are accomplished using variational approach. Results have been achieved using a C0 continuous isoparametric Lagrangian finite element with 13 degrees of freedom per node. Convergence and comparison studies have been performed to ascertain the effectiveness of the present model. Numerical results are highlighted for different thickness ratios, aspect ratios, and role played by the constituent volume fraction index with different boundary conditions.


2014 ◽  
Vol 627 ◽  
pp. 57-60 ◽  
Author(s):  
Wasim M.K. Helal ◽  
Dong Yan Shi

Functionally graded materials (FGMs) have become helpful in our engineering applications. Analysis of functionally graded material (FGM) plate during debonding case with different boundary conditions is the main purpose of this investigation. Elastic modulus (E) of functionally graded (FG) plate is assumed to vary continuously throughout the height of the plate, according the volume fraction of the constituent materials based on a modified sigmoid function, but the value of Poisson coefficient is constant. In this research, the finite element method (FEM) is used in order to show the shape of a plate made of FGM during debonding case with different boundary conditions. In the present investigation, the displacement value applied to the FGM plate is changed in order to find the relationship between the maximum von Mises stress and the displacement. Also, the relationship between the maximum shear stress and the displacement is carried out in the present work. The material gradient indexes of the FGM plate are changed from 1 to 10. The stress distributions around the debonding zone with all the material gradient indexes of the FGM plate are investigated in this work.


2012 ◽  
Vol 12 (02) ◽  
pp. 311-335 ◽  
Author(s):  
X. Q. HE ◽  
L. LI ◽  
S. KITIPORNCHAI ◽  
C. M. WANG ◽  
H. P. ZHU

Based on an inextensional two-parameter analytical model for cylindrical shells, bi-stable analyses were carried out on laminated functionally graded material (FGM) shells with various layups of fibers. Properties of FGM shells are functionally graded in the thickness direction according to a volume fraction power law distribution. The effects of constituent volume fractions of FGM matrix are examined on the curvature and twist of laminated FGM shells. The results reveal that the optimum combination of constituents of FGM matrix can be obtained for the maximum twist of FGM shells with antisymmetric layups, which helps the design of deployable structures. The effects of Young's modulus of fibers and the symmetry of layups on bi-stable behaviors are also discussed in detail.


2017 ◽  
Vol 21 (3) ◽  
pp. 938-972 ◽  
Author(s):  
Dao Van Dung ◽  
Nguyen Thi Nga ◽  
Pham Minh Vuong

This paper investigates analytically nonlinear buckling and postbuckling of functionally graded sandwich circular thick cylindrical shells filled inside by Pasternak two-parameter elastic foundations under thermal loads and axial compression loads. Shells are reinforced by closely spaced functionally graded material (FGM) rings and stringers. The temperature field is taken into account. Two general Sigmoid law and general power law, with four models of stiffened FGM sandwich cylindrical shell, are proposed. Using the Reddy’s third-order shear deformation shell theory (TSDT), stress function, and Lekhnitsky’s smeared stiffeners technique, the governing equations are derived. The closed form to determine critical axial load and postbuckling load-deflection curves are obtained by the Galerkin method. The effects of the face sheet thickness to total thickness ratio, stiffener, foundation, material, and dimensional parameters on critical thermal loads, critical mechanical loads and postbuckling behavior of shells are analyzed. In addition, this paper shows that for thin shells we can use the classical shell theory to investigate stability behavior of shell, but for thicker shells the use of TSDT for analyzing nonlinear stability of shell is necessary and suitable.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Vlado Lubarda

A pressurized functionally-graded cylinder is considered made of the material whose elastic moduli vary with the radial distance according to the power-law relation. Some peculiar features of the mechanical response are noted for an incompressible functionally-graded material with the power of radial inhomogeneity equal to two. In particular, it is shown that the maximum shear stress is constant throughout the cylinder, while the displacement changes proportional to 1/r along the radial distance. No displacement takes place at all under equal pressures applied at both boundaries.


Sign in / Sign up

Export Citation Format

Share Document