Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs

2015 ◽  
Vol 17 (6) ◽  
pp. 632-665 ◽  
Author(s):  
Saeed Kamarian ◽  
Mahmoud Shakeri ◽  
MH Yas ◽  
Mahdi Bodaghi ◽  
A Pourasghar
Author(s):  
AR Setoodeh ◽  
M Ghorbanzadeh ◽  
P Malekzadeh

In this article, free vibration analysis of elastically supported sandwich beams with functionally graded face sheets subjected to thermal environment is presented. In order to accurately include the transverse shear deformation and the inertia effects, two-dimensional elasticity theory is used to formulate the problem. The layerwise theory in conjunction with the differential quadrature method is employed to discretize the governing equations in the thickness and axial directions, respectively. The material properties of functionally graded face sheets are assumed to be temperature-dependent and graded in the thickness direction according to a power-law distribution. For the purpose of comparison, the problem under consideration is also solved using two-dimensional finite element method and the first-order shear deformation theory. The accuracy, convergence, and versatility of the method are demonstrated by comparing the results with those of the two aforementioned approaches and also with the existing solutions in literature. Eventually, some new numerical results are presented which depict the effects of different material and geometrical parameters on natural frequencies and mode shapes of the beam.


2021 ◽  
Vol 1206 (1) ◽  
pp. 012016
Author(s):  
Saurabh Kumar

Abstract Free vibration analysis is conducted on axially functionally graded Euler-Bernoulli beam resting on variable Pasternak foundation. The material properties of the beam and the stiffness of the foundation are considered to be varying linearly along the axial direction. Two types of boundary conditions namely; clamped and simply supported are used in the analysis. The problem is formulated using Rayleigh-Ritz method and governing equations are derived with the help of Hamilton’s principle. The numerical results are generated for different material gradation parameter, foundation parameter and boundary conditions and the effect of these parameters on the free vibration behaviour of the beam is discussed.


Sign in / Sign up

Export Citation Format

Share Document