Influence of CNS T2-focal lesions on cervical cord atrophy and disability in multiple sclerosis

2019 ◽  
Vol 26 (11) ◽  
pp. 1402-1409 ◽  
Author(s):  
Emanuele Pravatà ◽  
Paola Valsasina ◽  
Claudio Gobbi ◽  
Chiara Zecca ◽  
Gianna C Riccitelli ◽  
...  

Background: Mechanisms associated with cervical spinal cord (CSC) and upper thoracic spinal cord (TSC) atrophy in multiple sclerosis (MS) are poorly understood. Objective: To assess the influence of brain, CSC and TSC T2-hyperintense lesions on cord atrophy and disability in MS. Methods: Thirty-four MS patients underwent 3T brain, cervical and thoracic cord magnetic resonance imaging (MRI) and Expanded Disability Status Scale (EDSS) score assessment. CSC/TSC lesion number and volume (LV), whole-brain and cortico-spinal tract (CST) LVs were obtained. Normalized whole CSC and upper TSC cross-sectional areas (CSAn) were also derived. Age- and sex-adjusted regression models assessed associations of brain/cord lesions with CSAn and EDSS and identified variables independently associated with CSAn and EDSS with a stepwise variable selection. Results: CSC CSAn (β = −0.36, p = 0.03) and TSC CSAn (β = −0.60, p < 0.001) were associated with CSC T2 LV. EDSS (median = 3.0) was correlated with CSC T2 LV (β = 0.42, p = 0.01), brain (β = 0.34, p = 0.04) and CST LV (β = 0.35, p = 0.03). The multivariate analysis retained CSC LV as significant predictor of CSC CSAn ( R2 = 0.20, p = 0.023) and TSC CSAn ( R2 = 0.51, p < 0.001) and retained CSC and CST LVs as significant predictors of EDSS ( R2 = 0.55, p = 0.001). Conclusions: CSC LV is an independent predictor of cord atrophy. When neurological impairment is relatively mild, central nervous system (CNS) lesion burden is a better correlate of disability than atrophy.

2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
E. Gialafos ◽  
S. Gerakoulis ◽  
A. Grigoriou ◽  
V. Haina ◽  
C. Kilidireas ◽  
...  

A 47-year-old female patient with multiple sclerosis (MS) developed symptomatic intermittent 2nd degree atrioventricular block (AVB) of five-hour duration, five hours after the first two doses of fingolimod, that resolved completely. Frequency domain analysis of heart rate variability (HRV) revealed increased parasympathetic activity and decreased sympathetic tone, while modified Ewing tests were suggestive of impaired cardiac sympathetic function. We hypothesize that expression of this particular arrhythmia might be related to autonomic nervous system (ANS) dysfunction due to demyelinating lesions in the upper thoracic spinal cord, possibly augmented by the parasympathetic effect of the drug.


2015 ◽  
Vol 22 (7) ◽  
pp. 910-920 ◽  
Author(s):  
Hugh Kearney ◽  
Katherine A Miszkiel ◽  
Marios C Yiannakas ◽  
Daniel R Altmann ◽  
Olga Ciccarelli ◽  
...  

Background: The in vivo relationship of spinal cord lesion features with clinical course and function in multiple sclerosis (MS) is poorly defined. Objective: The objective of this paper is to investigate the associations of spinal cord lesion features on MRI with MS subgroup and disability. Methods: We recruited 120 people: 25 clinically isolated syndrome, 35 relapsing–remitting (RR), 30 secondary progressive (SP), and 30 primary progressive (PP) MS. Disability was measured using the Expanded Disability Status Scale. We performed 3T axial cervical cord MRI, using 3D-fast-field-echo and phase-sensitive-inversion-recovery sequences. Both focal lesions and diffuse abnormalities were recorded. Focal lesions were classified according to the number of white matter (WM) columns involved and whether they extended to grey matter (GM). Results: The proportion of patients with focal lesions involving at least two WM columns and extending to GM was higher in SPMS than in RRMS ( p = 0.03) and PPMS ( p = 0.015). Diffuse abnormalities were more common in both PPMS and SPMS, compared with RRMS (OR 6.1 ( p = 0.002) and 5.7 ( p = 0.003), respectively). The number of lesions per patient involving both the lateral column and extending to GM was independently associated with disability ( p < 0.001). Conclusions: More extensive focal cord lesions, extension of lesions to GM, and diffuse abnormalities are associated with progressive MS and disability.


2019 ◽  
Vol 60 (4) ◽  
pp. 195-201
Author(s):  
Iman Emad Ahmed ◽  
Hayder Kareem Al-Jaberi ◽  
Mohammed M. Jawad Alkahlissi

Background: The prevalence of spinal cord lesions is high in multiple sclerosis particularly in the cervical cord, and their detection can assist in both the diagnosis and follow-up of the patients. For spinal multiple sclerosis, MRI is considered the first line investigation. Objective: To evaluate the value of sagittal 1.5 Tesla proton density-fast spin echo (PD-FSE) MRI in the detecting and increasing conspicuity of multiple sclerosis lesions in cervical cord in comparison with sagittal T2 fast spin-echo (T2-FSE) MRI. Patients and Methods: A cross sectional study carried out from 3rd of January 2017 to 1st of January 2018 in the MRI department of Al-Imamein Al-Kadhimein Medical City, and included 60 selected patients with a known diagnosis of multiple sclerosis. All patients were examined with 1.5 T sagittal PD-FSE, T2-FSE and axial gradient recalled-echo (GRE) MRI. Results: Sixty patients with cervical multiple sclerosis were enrolled in the study, 146 (100%) lesions were detected by PD-FSE imaging, while T2 detected 105 (71.9%), 41 more lesions (28%) were detected by PD-FSE imaging, (P-value <0.001). All extra lesions were confirmed on axial imaging. In 13 patients (21.6%) one lesion or more had been detected on sagittal PD-FSE imaging while on sagittal T2-FSE imaging, no lesion were detected. On PD-FSE imaging, 17 long lesions were detected in 16 patients (26.7%) while 7 long lesions in 7 patients (11.7%) were detected by T2-FSE imaging. So, in 9 patients (16.7%) 10 lesions were detected as long in PD-FSE while short lesion in T2– FSE, the detection of long lesions by PD-FSE was significantly higher than in T2– FSE (100% vs 71.9% with p- value of 0.002). The mean lesion contrast to cord ratio was significantly higher in PD-FSE as compared to T2-FSE (PD-FSE, 79±2.0, against T2-FSE, 61± 2.6; P-value <0.001). Conclusion: Sagittal proton density was more efficient and more accurate in the detection of cervical cord lesions than sagittal T2-FSE sequence, when used in conjunction with sagittal T2-FSE; it can raise the diagnostic assurance via improving the visualization of the lesions. 


2014 ◽  
Vol 21 (7) ◽  
pp. 875-884 ◽  
Author(s):  
Viola Biberacher ◽  
Christine C Boucard ◽  
Paul Schmidt ◽  
Christina Engl ◽  
Dorothea Buck ◽  
...  

Background: Despite agreement about spinal cord atrophy in progressive forms of multiple sclerosis (MS), data on clinically isolated syndrome (CIS) and relapsing–remitting MS (RRMS) are conflicting. Objective: To determine the onset of spinal cord atrophy in the disease course of MS. Methods: Structural brain magnetic resonance imaging (MRI) was acquired from 267 patients with CIS (85) or RRMS (182) and 64 healthy controls (HCs). The upper cervical cord cross-sectional area (UCCA) was determined at the level of C2/C3 by a segmentation tool and adjusted for focal MS lesions. The coefficient of variation (CV) was calculated from all measurements between C2/C3 and 13 mm above as a measure of structural variability. Results: Compared to HCs (76.1±6.9 mm2), UCCA was significantly reduced in CIS patients (73.5±5.8 mm2, p=0.018) and RRMS patients (72.4±7.0 mm2, p<0.001). Structural variability was higher in patients than in HCs, particularly but not exclusively in case of focal lesions (mean CV HCs/patients without/with lesions: 2.13%/2.55%/3.32%, all p-values<0.007). UCCA and CV correlated with Expanded Disability Status Scale (EDSS) scores ( r =−0.131/0.192, p=0.044/<0.001) and disease duration ( r=−0.134/0.300, p=0.039/< 0.001). CV additionally correlated with hand and arm function ( r=0.180, p=0.014). Conclusion: In MS, cervical cord atrophy already occurs in CIS. In early stages, structural variability may be a more meaningful marker of spinal cord pathology than atrophy.


2007 ◽  
Vol 68 (4) ◽  
pp. 461-463 ◽  
Author(s):  
Cumhur Kilinçer ◽  
Levent Öztürk ◽  
M. Kemal Hamamcioglu ◽  
Emre Altunrende ◽  
Sebahattin Çobanoglu

2015 ◽  
Vol 72 (8) ◽  
pp. 897 ◽  
Author(s):  
Regina Schlaeger ◽  
Nico Papinutto ◽  
Alyssa H. Zhu ◽  
Iryna V. Lobach ◽  
Carolyn J. Bevan ◽  
...  

2004 ◽  
Vol 16 (5) ◽  
pp. 306-309
Author(s):  
Victor R. DaSilva ◽  
Mubarak Al-Gahtany ◽  
Rajiv Midha ◽  
Dipanka Sarma ◽  
Perry Cooper

✓ Transdural herniation of the spinal cord, a rare but well-documented entity, has been reported sporadically for more than 25 years as a possible cause for various neurological signs and symptoms ranging from isolated sensory or motor findings to myelopathy and Brown–Séquard syndrome. The authors report, to the best of their knowledge, the first case of upper thoracic spinal cord herniation occurring after traumatic nerve root avulsion.


2019 ◽  
Vol 20 (16) ◽  
pp. 3922 ◽  
Author(s):  
Allnoch ◽  
Baumgärtner ◽  
Hansmann

Astrocytes play a key role in demyelinating diseases, like multiple sclerosis (MS), although many of their functions remain unknown. The aim of this study was to investigate the impact of astrocyte depletion upon de- and remyelination, inflammation, axonal damage, and virus distribution in Theiler`s murine encephalomyelitis (TME). Groups of two to six glial fibrillary acidic protein (GFAP)-thymidine-kinase transgenic SJL mice and SJL wildtype mice were infected with TME virus (TMEV) or mock (vehicle only). Astrocyte depletion was induced by the intraperitoneal administration of ganciclovir during the early and late phase of TME. The animals were clinically investigated while using a scoring system and a rotarod performance test. Necropsies were performed at 46 and 77 days post infection. Cervical and thoracic spinal cord segments were investigated using hematoxylin and eosin (H&E), luxol fast blue-cresyl violet (LFB), immunohistochemistry targeting Amigo2, aquaporin 4, CD3, CD34, GFAP, ionized calcium-binding adapter molecule 1 (Iba1), myelin basic protein (MBP), non-phosphorylated neurofilaments (np-NF), periaxin, S100A10, TMEV, and immunoelectron microscopy. The astrocyte depleted mice showed a deterioration of clinical signs, a downregulation and disorganization of aquaporin 4 in perivascular astrocytes accompanied by vascular leakage. Furthermore, astrocyte depleted mice showed reduced inflammation and lower numbers of TMEV positive cells in the spinal cord. The present study indicates that astrocyte depletion in virus triggered CNS diseases contributes to a deterioration of clinical signs that are mediated by a dysfunction of perivascular astrocytes.


Sign in / Sign up

Export Citation Format

Share Document