A low-cost version of electro-mechanical impedance technique for damage detection in reinforced concrete structures using multiple piezo configurations

2016 ◽  
Vol 20 (8) ◽  
pp. 1247-1254 ◽  
Author(s):  
Naveet Kaur ◽  
Lingfang Li ◽  
Suresh Bhalla ◽  
Yong Xia

The electro-mechanical impedance technique has developed rapidly during the past few decades as a reliable health monitoring component of civil structures. However, the high cost of impedance analyzer/LCR meter conventionally used for data acquisition in the electro-mechanical impedance technique restricts its wide use in real applications. This article provides a comprehensive study of exploring the low-cost electro-mechanical impedance technique for health monitoring of concrete under destructive testing using multiple piezo configurations. The experimental scheme ensures separate acquisition of both the real and the imaginary components of the electro-mechanical impedance signature for detailed analysis, a feature not available in some previous low-cost adaptations. The piezo configurations covered here for comparison are the surface-bonded piezo configuration, the embedded piezo configuration, and the metal wire piezo configuration. The repeatability of the proposed low-cost electro-mechanical impedance technique is checked and the results are compared with the traditional counterpart utilizing conventional LCR meter. The two electro-mechanical impedance approaches show similar trends of the conductance signature for all configurations. In particular, the metal wire piezo configuration can be adopted as an excellent alternative in practice for reinforced concrete structures when the direct surface bonding is not feasible. Overall, the low-cost version of the electro-mechanical impedance technique is effective to detect the presence of the damage.

2017 ◽  
Vol 28 (19) ◽  
pp. 2717-2736 ◽  
Author(s):  
Naveet Kaur ◽  
Lingfang Li ◽  
Suresh Bhalla ◽  
Yong Xia ◽  
Pinghe Ni ◽  
...  

Since the last two decades, the electro-mechanical impedance technique has undergone extensive theoretical and experimental transformations coupled with the evolution of newer practical adaptations and variants. Notable among these are the metal wire–based variant, the dual piezo configuration and the embedded configuration, over and above the conventional surface-bonded configuration. Although there is a plethora of electro-mechanical impedance–related research devoted to metallic structures, only a limited number of studies are available for reinforced concrete structures, which are characterized by more complex behaviour and pose multiple problems for the electro-mechanical impedance sensors such as small range and high damping due to heterogeneous constitution. This article presents, for the first time, a comprehensive comparative study covering four different variants, namely, the surface-bonded single piezo configuration, the embedded single piezo configuration and the metal wire single piezo configuration in electro-mechanical impedance technique for structural health monitoring of a real-life-sized reinforced concrete beam subjected to destructive testing. The article also proposes a modified and more practical version of the dual piezo configuration called the modified dual piezo configuration, employing concrete vibration sensors. It is found that the modified dual piezo configuration is the most expedient among all variants in capturing the damage with respect to the first occurrence of cracks and the final warning of ultimate failure. Metal wire single piezo configuration is good in detecting the first level of damage; however, its efficiency ceases thereafter when crack size increases. It can be considered as an alternative to surface-bonded single piezo configuration in the scenarios where the damage level is incipient. The sensitivity of the modified dual piezo configuration increases with increasing number of actuators connected in parallel due to an increase in the output current. Also, contrary to the surface-bonded single piezo configuration, the susceptance signature of the modified dual piezo configuration is equally sensitive to damage due to the absence of capacitance part in its admittance signature. Hence, its susceptance can also be used for damage severity measurement for incipient damage level in reinforced concrete structures. The surface-bonded single piezo configuration is found to be best in quantifying damage severity in terms of the equivalent stiffness parameter. Embedded single piezo configuration and metal wire single piezo configuration, on the other hand, correlate well with the global dynamic stiffness of the structure. Overall, the proposed integration enables an early detection of damage, its propagation and improved severity measurement for reinforced concrete structures, thus contributing to new application protocols.


2020 ◽  
Vol 92 (6) ◽  
pp. 13-25
Author(s):  
Vl.I. KOLCHUNOV ◽  
◽  
A.I. DEMYANOV ◽  
M.M. MIHAILOV ◽  
◽  
...  

The article offers a method and program for experimental studies of reinforced concrete structures with cross-shaped spatial crack under torsion with bending, the main purpose of which is to check the design assumptions and experimental determination of the design parameters of the proposed calculation method. The conducted experimental studies provide an opportunity to test the proposed calculation apparatus and clarify the regularities for determining deflections, angles of rotation of extreme sections, and stresses in the compressed zone of concrete. For analysis, the article presents a typical experimental scheme for the formation and development of cracks in the form of a sweep, as well as characteristic graphs of the dependence of the angles of rotation of end sections.


2021 ◽  
Vol 15 (58) ◽  
pp. 21-32
Author(s):  
Rafael Cunha ◽  
Camila Vieira ◽  
David Amorim

Reinforced concrete structures may need repair in order to ensure the designed durability. Such necessity vary in cause and effect, but the structural diagnosis serves as the basis for adopting intervention measures. The assessment of the structural condition usually is made in loco, but sometimes numerical analyses are required as a low cost and effective preliminary diagnosis. In general, numerical analyses use hundreds or thousands of finite elements and nonlinear theories that are not often used in engineering practice. As an alternative, lumped damage mechanics (LDM) uses key concepts of classic fracture and damage mechanics in plastic hinges throughout well-known quantities such as ultimate moment and cracking moment. Such theory describes the concrete cracking by a damage variable, which can be used as a diagnosis criterion. Therefore, this paper presents LDM as a diagnosis tool to analyse actual structures. The case studies presented in this paper are a former bridge arch tested in China and a balcony that collapsed in Brazil. The results show that LDM numerical response of those structures are quite close to laboratory observations (former bridge arch) and in loco measurements (balcony).


Measurement ◽  
2019 ◽  
Vol 135 ◽  
pp. 617-624 ◽  
Author(s):  
Richard H. Scott ◽  
Sanjay Chikermane ◽  
Miodrag Vidakovic ◽  
Brett McKinley ◽  
Tong Sun ◽  
...  

2017 ◽  
Vol 10 (2) ◽  
pp. 358-385 ◽  
Author(s):  
D.S. ADAMATTI ◽  
A. LORENZI ◽  
J. A. CHIES ◽  
L.C.P. SILVA FILHO

Abstract The application of Nondestructive Testing methods (NDT) may be an interesting strategy to monitor the condition state of reinforced concrete structures, especially when there are problems related to mixing, conveying or placing the concrete. Among the NDT methods, the Ultrasonic Pulse Velocity (UPV) has been one of the most used in various fields of civil engineering, due to the ease of operation, low cost, test velocity and low level of damage to the surface analyzed. This work aims to study the influence of certain technological variables in the results obtained through UPV tests. With this aim two large blocks were cast at the laboratory, with dimensions close to real concrete elements. One of the elements was reinforcement with steel meshes on both sides while the other was cast without reinforcement. Inside these elements objects were introduced to reproduce internal concrete flaws. To facilitate the analysis the results were represented by means of a surface mapping image technique and were also subjected to statistical analysis. Through the study it was demonstrated that the correct choice of test parameters is crucial to obtain a right interpretation of UPV results from real structures.


2005 ◽  
Author(s):  
Nathan P. Dickerson ◽  
Jarkko T. Simonen ◽  
Matthew M. Ardringa ◽  
Sharon L. Wood ◽  
Dean P. Neikirk

Sign in / Sign up

Export Citation Format

Share Document