scholarly journals Linear discriminant analysis and principal component analysis to predict coronary artery disease

2020 ◽  
Vol 26 (3) ◽  
pp. 2181-2192 ◽  
Author(s):  
Carlo Ricciardi ◽  
Antonio Saverio Valente ◽  
Kyle Edmund ◽  
Valeria Cantoni ◽  
Roberta Green ◽  
...  

Coronary artery disease is one of the most prevalent chronic pathologies in the modern world, leading to the deaths of thousands of people, both in the United States and in Europe. This article reports the use of data mining techniques to analyse a population of 10,265 people who were evaluated by the Department of Advanced Biomedical Sciences for myocardial ischaemia. Overall, 22 features are extracted, and linear discriminant analysis is implemented twice through both the Knime analytics platform and R statistical programming language to classify patients as either normal or pathological. The former of these analyses includes only classification, while the latter method includes principal component analysis before classification to create new features. The classification accuracies obtained for these methods were 84.5 and 86.0 per cent, respectively, with a specificity over 97 per cent and a sensitivity between 62 and 66 per cent. This article presents a practical implementation of traditional data mining techniques that can be used to help clinicians in decision-making; moreover, principal component analysis is used as an algorithm for feature reduction.

Author(s):  
David Zhang ◽  
Xiao-Yuan Jing ◽  
Jian Yang

This chapter presents two straightforward image projection techniques — two-dimensional (2D) image matrix-based principal component analysis (IMPCA, 2DPCA) and 2D image matrix-based Fisher linear discriminant analysis (IMLDA, 2DLDA). After a brief introduction, we first introduce IMPCA. Then IMLDA technology is given. As a result, we summarize some useful conclusions.


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 870
Author(s):  
Tengteng Wen ◽  
Dehan Luo ◽  
Yongjie Ji ◽  
Pingzhong Zhong

Odor reproduction, a branch of machine olfaction, is a technology through which a machine represents various odors by blending several odor sources in different proportions and releases them. In this paper, an odor reproduction system is proposed. The system includes an atomization-based odor dispenser using 16 micro-porous piezoelectric transducers. The authors propose the use of an electronic nose combined with a Principal Component Analysis–Linear Discriminant Analysis (PCA–LDA) model to evaluate the effectiveness of the system. The results indicate that the model can be used to evaluate the system.


2019 ◽  
Vol 3 (2) ◽  
pp. 72
Author(s):  
Widi Astuti ◽  
Adiwijaya Adiwijaya

Cancer is one of the leading causes of death globally. Early detection of cancer allows better treatment for patients. One method to detect cancer is using microarray data classification. However, microarray data has high dimensions which complicates the classification process. Linear Discriminant Analysis is a classification technique which is easy to implement and has good accuracy. However, Linear Discriminant Analysis has difficulty in handling high dimensional data. Therefore, Principal Component Analysis, a feature extraction technique is used to optimize Linear Discriminant Analysis performance. Based on the results of the study, it was found that usage of Principal Component Analysis increases the accuracy of up to 29.04% and f-1 score by 64.28% for colon cancer data.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Heping Li ◽  
Yu Ren ◽  
Fan Yu ◽  
Dongliang Song ◽  
Lizhe Zhu ◽  
...  

To facilitate the enhanced reliability of Raman-based tumor detection and analytical methodologies, an ex vivo Raman spectral investigation was conducted to identify distinct compositional information of healthy (H), ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). Then, principal component analysis-linear discriminant analysis (PCA-LDA) and principal component analysis-support vector machine (PCA-SVM) models were constructed for distinguishing spectral features among different tissue groups. Spectral analysis highlighted differences in levels of unsaturated and saturated lipids, carotenoids, protein, and nucleic acid between healthy and cancerous tissue and variations in the levels of nucleic acid, protein, and phenylalanine between DCIS and IDC. Both classification models were principal component analysis-linear discriminant analysis to be extremely efficient on discriminating tissue pathological types with 99% accuracy for PCA-LDA and 100%, 100%, and 96.7% for PCA-SVM analysis based on linear kernel, polynomial kernel, and radial basis function (RBF), respectively, while PCA-SVM algorithm greatly simplified the complexity of calculation without sacrificing performance. The present study demonstrates that Raman spectroscopy combined with multivariate analysis technology has considerable potential for improving the efficiency and performance of breast cancer diagnosis.


Sign in / Sign up

Export Citation Format

Share Document