scholarly journals Short-term and long-term adaptation algorithm for low-pressure exhaust gas recirculation estimation in spark-ignition engines

2018 ◽  
Vol 20 (4) ◽  
pp. 424-440 ◽  
Author(s):  
Konstantinos Siokos ◽  
Rohit Koli ◽  
Robert Prucka

Low-pressure exhaust gas recirculation systems are capable of increasing fuel efficiency of spark-ignition engines; however, they introduce control challenges. The low available pressure differential that drives exhaust gas recirculation flow, along with the significant pressure pulsations in the exhaust environment of a turbocharged engine hamper the accuracy of feed-forward estimation models. For that reason, feedback measurements are required in an effort to increase prediction accuracy. Additionally, the accumulation of deposits in the exhaust gas recirculation system and the aging of the valve, change the flow characteristics over time. Under these considerations, an adaptation algorithm is developed which handles both short-term (operating-point-dependent errors) and long-term (system aging) corrections for exhaust gas recirculation flow estimation. The algorithm is based on an extended Kalman filter for joint state and parameter estimation and uses the output of an intake oxygen sensor to adjust the feed-forward prediction by creating an online adaptation map. Two different exhaust gas recirculation estimation models are developed and coupled with the adaptation algorithm. The performance of the algorithm for both estimation models is evaluated in real-time through transient experiments with a turbocharged spark-ignition engine. It is demonstrated that this methodology is capable of creating an adaptation map which captures system aging, while also reduces the estimation bias by more than four times resulting in a prediction error of less than 1%. Finally, this approach proves to be a valuable tool that can significantly reduce offline calibration efforts for such models.

2016 ◽  
Vol 18 (7) ◽  
pp. 717-731 ◽  
Author(s):  
David K Marsh ◽  
Alexander K Voice

In this work, a simple methodology was implemented to predict the onset of knock in spark-ignition engines and quantify the benefits of two practical knock mitigation strategies: cooled exhaust gas recirculation and syngas blending. Based on the results of this study, both cooled exhaust gas recirculation and the presence of syngas constituents in the end-gas substantially improved the knock-limited compression ratio of the engine. At constant load, 25% exhaust gas recirculation increased the knock-limited compression ratio from 9.0 to 10.8:1 (0.07 compression ratio per 1% exhaust gas recirculation) due to lower end-gas temperature and reactant (fuel and oxygen) concentrations. At exhaust gas recirculation rates above 43%, higher intake temperature outweighed the benefits of lower end-gas reactant concentration. At constant intake temperature, cooled exhaust gas recirculation was significantly more effective at all exhaust gas recirculation rates (0.10 compression ratio per 1% exhaust gas recirculation), and no diminishing returns or optimum was observed. Both hydrogen and carbon monoxide were also predicted to improve knock by reducing end-gas reactivity, likely through the conversion of high-reactivity hydroxy-radicals to less reactive peroxy-radicals. Hydrogen increased the knock-limited compression ratio by 1.1 per volume percent added at constant energy content. Carbon monoxide was less effective, increasing the knock-limited compression ratio by 0.38 per volume percent added. Combining 25% cooled exhaust gas recirculation with reformate produced from rich combustion at an equivalence ratio of 1.3 resulted in a predicted increase in the knock-limited compression ratio of 3.5, which agreed well with the published experimental engine data. The results show the extent to which syngas blending and cooled exhaust gas recirculation each contribute separately to knock mitigation and demonstrate that both can be effective knock mitigation strategies. Together, these solutions have the potential to increase the compression ratio and efficiency of spark-ignition engines.


2020 ◽  
Vol 10 (21) ◽  
pp. 7634
Author(s):  
Pedro Piqueras ◽  
Joaquín De la Morena ◽  
Enrique José Sanchis ◽  
Rafael Pitarch

Exhaust gas recirculation is one of the technologies that can be used to improve the efficiency of spark-ignition engines. However, apart from fuel consumption reduction, this technology has a significant impact on exhaust gaseous emissions, inducing a significant reduction in nitrogen oxides and an increase in unburned hydrocarbons and carbon monoxide, which can affect operation of the aftertreatment system. In order to evaluate these effects, data extracted from design of experiments done on a multi-cylinder 1.3 L turbocharged spark-ignition engine with variable valve timing and low-pressure exhaust gas recirculation (EGR) are used. The test campaign covers the area of interest for the engine to be used in new-generation hybrid electric platforms. In general, external EGR provides an approximately linear decrease of nitrogen oxides and deterioration of unburned hydrocarbon emissions due to thermal and flame quenching effects. At low load, the impact on emissions is directly linked to actuation of the variable valve timing system due to the interaction of EGR with internal residuals. For the same external EGR rate, running with high valve overlap increases the amount of internal residuals trapped inside the cylinder, slowing down combustion and increasing Unburnt hydrocarbon (HC) emissions. However, low valve overlap (i.e., low internal residuals) operation implies a decrease in oxygen concentration in the exhaust line for the same air–fuel ratio inside the cylinders. At high load, interaction with the variable valve timing system is reduced, and general trends of HC increase and of oxygen and carbon monoxide decrease appear as EGR is introduced. Finally, a simple stoichiometric model evaluates the potential performance of a catalyst targeted for EGR operation. The results highlight that the decrease of nitrogen oxides and oxygen availability together with the increase of unburned hydrocarbons results in a huge reduction of the margin in oxygen availability to achieve a complete oxidation from a theoretical perspective. This implies the need to rely on the oxygen storage capability of the catalyst or the possibility to control at slightly lean conditions, taking advantage of the nitrogen oxide reduction at engine-out with EGR.


Sign in / Sign up

Export Citation Format

Share Document