Modeling of engine thermal dynamics and its application in energy management of HEVs considering engine warming-up

2021 ◽  
pp. 146808742110445
Author(s):  
Hongqing Chu ◽  
Haoyun Shi ◽  
Yuyao Jiang ◽  
Tielong Shen

The process of engine warming-up leads to additional fuel consumption. Energy management strategy considering engine warming-up is expected to further improve the energy economy of hybrid electric vehicles. This study provides a simple yet practical model for engine thermal dynamics. Then, the optimization problem of energy management considering engine warming-up is formulated on the basis of the control-oriented engine thermal dynamics. Thereafter, the optimal solution is derived by using the dynamic programming algorithm. Finally, the proposed engine thermal dynamics and energy management strategy are evaluated through simulation and experiments. Results show that the established engine thermal model effectively captures the main thermal behavior, simulation results reveal a high degree of approximation to experimental results for the engine temperature and fuel consumption, and the energy management strategy with engine temperature can further improve the energy efficiency.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Weiguang Zheng ◽  
Weiwei Xin ◽  
Enyong Xu ◽  
Shuilong He ◽  
Jirong Qin ◽  
...  

This paper presents a methodology for the sizing of a heavy-duty fuel cell commercial vehicle. The parameters scanning model and the long-term stochastic drive cycle are adopted for this proposed sizing framework. The dynamic programming algorithm is employed as the energy management strategy to assess the performance of sizing. The efficacy of this framework is evaluated, and a detailed analysis for the hydrogen consumption is given in the results. In addition, a prediction analysis based on the price performance of the next decade is also given in this work.


Author(s):  
Balaji Sampathnarayanan ◽  
Lorenzo Serrao ◽  
Simona Onori ◽  
Giorgio Rizzoni ◽  
Steve Yurkovich

The energy management strategy in a hybrid electric vehicle is viewed as an optimal control problem and is solved using Model Predictve Control (MPC). The method is applied to a series hybrid electric vehicle, using a linearized model in state space formulation and a linear MPC algorithm, based on quadratic programming, to find a feasible suboptimal solution. The significance of the results lies in obtaining a real-time implementable control law. The MPC algorithm is applied using a quasi-static simulator developed in the MATLAB environment. The MPC solution is compared with the dynamic programming solution (offline optimization). The dynamic programming algorithm, which requires the entire driving cycle to be known a-priori, guarantees the optimality and is used here as the benchmark solution. The effect of the parameters of the MPC (length of prediction horizon, type of prediction) is also investigated.


2021 ◽  
Vol 11 (17) ◽  
pp. 8218
Author(s):  
Haishi Dou ◽  
Youtong Zhang ◽  
Likang Fan

The performance of the all-wheel-drive electric vehicle is inseparable from the energy management strategy (EMS). An outstanding EMS could extend the cycling mileage, coordinating the power output of the battery and exerts the advantage of the motor comprehensively. However, the current EMS has poor performance in real-time, and this paper proposes the dynamic programming coordination strategy (DPCS) to solve the problem. Firstly, the EMS based on a rule-based control strategy (RBCS) is applied in a different driving cycle. Secondly, the dynamic programming algorithm (DP) is proposed in the process. The DPCS cooperated the advantage of RBCS and DP, extracting the boundary parameters along with the demand power and vehicle speed. Finally, the number of motors joined in the driving condition is elucidated and the method obtains the optimal torque split ratio through a partly-known driving cycle. By incorporating the thought of a basis of rules, the DPCS determines the torque of each motor that confirm the motor working in an efficient range that incorporates the mind of dynamic programming. The method is validated through the simulation. The results show that the strategy can significantly improve the mileage of the driving cycle, with comprehensive performance in energy distribution and utilization.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4472 ◽  
Author(s):  
Rishikesh Mahesh Bagwe ◽  
Andy Byerly ◽  
Euzeli Cipriano dos Santos ◽  
Ben-Miled

This paper proposes an Adaptive Rule-Based Energy Management Strategy (ARBS EMS) for a parallel hybrid electric vehicle (HEV). The aim of the strategy is to facilitate the aftermarket hybridization of medium- and heavy-duty vehicles. ARBS can be deployed online to optimize fuel consumption without any detailed knowledge of the engine efficiency map of the vehicle or the entire duty cycle. The proposed strategy improves upon the established Preliminary Rule-Based Strategy (PRBS), which has been adopted in commercial vehicles, by dynamically adjusting the regions of operations of the engine and the motor. It prevents the engine from operating in highly inefficient regions while reducing the total equivalent fuel consumption of the vehicle. Using an HEV model developed in Simulink®, both the proposed ARBS and the established PRBS strategies are compared over an extended duty cycle consisting of both urban and highway segments. The results show that ARBS can achieve high MPGe with different thresholds for the boundary between the motor region and the engine region. In contrast, PRBS can achieve high MPGe only if this boundary is carefully established from the engine efficiency map. This difference between the two strategies makes the ARBS particularly suitable for aftermarket hybridization where full knowledge of the engine efficiency map may not be available.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879776 ◽  
Author(s):  
Jianjun Hu ◽  
Zhihua Hu ◽  
Xiyuan Niu ◽  
Qin Bai

To improve the fuel efficiency and battery life-span of plug-in hybrid electric vehicle, the energy management strategy considering battery life decay is proposed. This strategy is optimized by genetic algorithm, aiming to reduce the fuel consumption and battery life decay of plug-in hybrid electric vehicle. Besides, to acquire better drive-cycle adaptability, driving patterns are recognized with probabilistic neural network. The standard driving cycles are divided into urban congestion cycle, highway cycle, and urban suburban cycle; the optimized energy management strategies in three representative driving cycles are established; meanwhile, a comprehensive test driving cycle is constructed to verify the proposed strategies. The results show that adopting the optimized control strategies, fuel consumption, and battery’s life decay drop by 1.9% and 3.2%, respectively. While using the drive-cycle recognition, the features of different driving cycles can be identified, and based on it, the vehicle can choose appropriate control strategy in different driving conditions. In the comprehensive test driving cycle, after recognizing driving cycles, fuel consumption and battery’s life decay drop by 8.6% and 0.3%, respectively.


Sign in / Sign up

Export Citation Format

Share Document