Increasing the Quantity of Lungs for Transplantation Using High-Frequency Chest Wall Oscillation: A Proposal

2002 ◽  
Vol 12 (4) ◽  
pp. 266-274 ◽  
Author(s):  
Jane M. Braverman

The use of chest physiotherapy in donor patient management occupies an established place in most lung procurement protocols. Although its merits remain controversial and uncorroborated by direct data, some studies support the efficacy of chest physiotherapy in a variety of pulmonary patient populations. Comparative studies have shown that an airway clearance technology utilizing high-frequency chest wall oscillation clears pulmonary secretions as well as or better than chest physiotherapy, but has few of its contraindications and disadvantages. The implementation of high-frequency chest wall oscillation as part of the donor lung procurement protocol may increase rates of successful lung recovery by providing effective clearance of obstructing pulmonary secretions containing destructive by-products of inflammation and entrapped pathogens. High-frequency chest wall oscillation may also improve arterial blood gas values, a critical factor in increasing lung procurement rates. Although speculative, the benefits of high-frequency chest wall oscillation on donor lungs might improve perfusion and oxygenation of other organs for possible transplantation.

1989 ◽  
Vol 67 (3) ◽  
pp. 985-992 ◽  
Author(s):  
M. C. Khoo ◽  
T. H. Ye ◽  
N. H. Tran

The major goal of this study was to compare gas exchange, tidal volume (VT), and dynamic lung pressures resulting from high-frequency airway oscillation (HFAO) with the corresponding effects in high-frequency chest wall oscillation (HFCWO). Eight anesthetized paralyzed dogs were maintained eucapnic with HFAO and HFCWO at frequencies ranging from 1 to 16 Hz in the former and 0.5 to 8 Hz in the latter. Tracheal (delta Ptr) and esophageal (delta Pes) pressure swings, VT, and arterial blood gases were measured in addition to respiratory impedance and static pressure-volume curves. Mean positive pressure (25–30 cmH2O) in the chest cuff associated with HFCWO generation decreased lung volume by approximately 200 ml and increased pulmonary impedance significantly. Aside from this decrease in functional residual capacity (FRC), no change in lung volume occurred as a result of dynamic factors during the course of HFCWO application. With HFAO, a small degree of hyperinflation occurred only at 16 Hz. Arterial PO2 decreased by 5 Torr on average during HFCWO. VT decreased with increasing frequency in both cases, but VT during HFCWO was smaller over the range of frequencies compared with HFAO. delta Pes and delta Ptr between 1 and 8 Hz were lower than the corresponding pressure swings obtained with conventional mechanical ventilation (CMV) applied at 0.25 Hz. delta Pes was minimized at 1 Hz during HFCWO; however, delta Ptr decreased continuously with decreasing frequency and, below 2 Hz, became progressively smaller than the corresponding values obtained with HFAO and CMV.


2005 ◽  
Vol 85 (12) ◽  
pp. 1278-1289 ◽  
Author(s):  
Joan C Darbee ◽  
Jamshed F Kanga ◽  
Patricia J Ohtake

Abstract Background and Purpose. This investigation identified ventilation distribution, gas mixing, lung function, and arterial blood oxyhemoglobin saturation (Spo2) physiologic responses to 2 independent airway clearance treatments, high-frequency chest wall oscillation (HFCWO) and low positive expiratory pressure (PEP) breathing, for subjects who had cystic fibrosis (CF) and who were hospitalized during acute and subacute phases of a pulmonary exacerbation. Subjects. Fifteen subjects with moderate to severe CF were included in this study. Methods. Subjects performed single-breath inert gas tests and spirometry before and immediately after HFCWO and PEP breathing at admission and discharge. Arterial blood oxyhemoglobin saturation was monitored throughout each treatment. Results. At admission and discharge, PEP breathing increased Spo2 during treatment, whereas HFCWO decreased Spo2 during treatment. Ventilation distribution, gas mixing, and lung function improved after HFCWO or PEP breathing. Discussion and Conclusion. High-frequency chest wall oscillation and PEP breathing are similarly efficacious in improving ventilation distribution, gas mixing, and pulmonary function in hospitalized people with CF. Because Spo2 decreases during HFCWO, people who have moderate to severe CF and who use HFCWO should have Spo2 monitored during an acute exacerbation.


2013 ◽  
Vol 22 (2) ◽  
pp. 115-124 ◽  
Author(s):  
Angeli Esguerra-Gonzalez ◽  
Monina Ilagan-Honorio ◽  
Stephanie Fraschilla ◽  
Priscilla Kehoe ◽  
Ai Jin Lee ◽  
...  

Background Chest physiotherapy and high-frequency chest wall oscillation (HFCWO) are routinely used after lung transplant to facilitate removal of secretions. To date, no studies have been done to investigate which therapy is more comfortable and preferred by lung transplant recipients. Patients who have less pain may mobilize secretions, heal, and recover faster. Objectives To compare effects of HFCWO versus chest physiotherapy on pain and preference in lung transplant recipients. Methods In a 2-group experimental, repeated-measures design, 45 lung transplant recipients (27 single lung, 18 bilateral) were randomized to chest physiotherapy (10 AM, 2 PM) followed by HFCWO (6 PM, 10 PM; group 1, n=22) or vice versa (group 2, n=23) on postoperative day 3. A verbal numeric rating scale was used to measure pain before and after treatment. At the end of the treatment sequence, a 4-item patient survey was administered to assess treatment preference, pain, and effectiveness. Data were analyzed with χ2 and t tests and repeated-measures analysis of variance. Results A significant interaction was found between mean difference in pain scores from before to after treatment and treatment method; pain scores decreased more when HFCWO was done at 10 AM and 6 PM (P =.04). Bilateral transplant recipients showed a significant preference for HFCWO over chest physiotherapy (11 [85%] vs 2 [15%], P=.01). However, single lung recipients showed no significant difference in preference between the 2 treatments (11 [42%] vs 14 [54%]). Conclusions HFCWO seems to provide greater decreases in pain scores than does chest physiotherapy. Bilateral lung transplant recipients preferred HFCWO to chest physiotherapy. HFCWO may be an effective, feasible alternative to chest physiotherapy. (American Journal of Critical Care. 2013;22:115–125)


2014 ◽  
Vol 27 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Angeli Esguerra-Gonzales ◽  
Monina Ilagan-Honorio ◽  
Priscilla Kehoe ◽  
Stephanie Fraschilla ◽  
Ai Jin Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document