scholarly journals Dynamic cluster heads selection and data aggregation for efficient target monitoring and tracking in wireless sensor networks

2018 ◽  
Vol 14 (6) ◽  
pp. 155014771878317 ◽  
Author(s):  
Juan Feng ◽  
Xiaozhu Shi ◽  
Jinxin Zhang

Due to energy limitation in wireless sensor networks, clustering is an efficient scheme which has been widely used in building practical wireless sensor networks, and various cluster head selection methods have been proposed nowadays. However, less emphasis was placed on the application constraints cluster head selection. In traditional clustering wireless sensor networks, cluster head is always located at the cluster centre and cannot detect an intruding target since the target first transits the border. Moreover, the data sensed from a target are sent by each cluster head through different routings to the sink so that it cannot be aggregated efficiently near the data source. In order to address these problems, this article proposes an efficient target tracking approach, in which the nodes on the edge of a cluster instead of the centred nodes are chosen as cluster heads so that cluster heads can serve as manager and monitoring node. Furthermore, we choose a collecting cluster head to collect the sensed data from the cluster heads around the target to facilitate data aggregation. Hence, the sensed data can be aggregated near to the data source, which avoids the data long-distance transmission and reduces data gathering costs. Moreover, each cluster head has different lifetime in the efficient target tracking approach according to its location and residual energy to balance the energy cost. Experimental results show that efficient target tracking approach outperformed the state-of-the-art approaches by improving the energy consumption as well as prolonging the network lifetime by about 20% as the 20% nodes die.

2012 ◽  
Vol 433-440 ◽  
pp. 5228-5232
Author(s):  
Mohammad Ahmadi ◽  
Hamid Faraji ◽  
Hossien Zohrevand

A sensor network has many sensor nodes with limited energy. One of the important issues in these networks is the increase of the life time of the network. In this article, a clustering algorithm is introduced for wireless sensor networks that considering the parameters of distance and remaining energy of each node in the process of cluster head selection. The introduced algorithm is able to reduce the amount of consumed energy in the network. In this algorithm, the nodes that have more energy and less distance from the base station more probably will become cluster heads. Also, we use algorithm for finding the shortest path between cluster heads and base station. The results of simulation with the help of Matlab software show that the proposed algorithm increase the life time of the network compared with LEACH algorithm.


2014 ◽  
Vol 989-994 ◽  
pp. 4273-4276
Author(s):  
Shi Ping Fan ◽  
Xiao Di Zhang ◽  
Hai Li Wang

In order to prolong the lifetime of wireless sensor networks, improvement of cluster-head selection mechanism based on LEACH protocol is proposed. To make the energy distribution more uniform, we consider the relationship of the density of nodes, residual energy of nodes and distance between nodes and Sink node. It eliminates the defect of energy consumption imbalance in the network caused by random position of cluster-heads and the problem of premature death of nodes caused by low energy nodes becoming cluster-heads. Simulation results show that compared with LEACH algorithm, the improved algorithm extend the network lifetime.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5281 ◽  
Author(s):  
Jin-Gu Lee ◽  
Seyha Chim ◽  
Ho-Hyun Park

Extending the lifetime and stability of wireless sensor networks (WSNs) through efficient energy consumption remains challenging. Though clustering has improved energy efficiency through cluster-head selection, its application is still complicated. In existing cluster-head selection methods, the locations where cluster-heads are desirable are first searched. Next, the nodes closest to these locations are selected as the cluster-heads. This location-based approach causes problems such as increased computation, poor selection accuracy, and the selection of duplicate nodes. To solve these problems, we propose the sampling-based spider monkey optimization (SMO) method. If the sampling population consists of nodes to select cluster-heads, the cluster-heads are selected among the nodes. Thus, the problems caused by different locations of nodes and cluster-heads are resolved. Consequently, we improve lifetime and stability of WSNs through sampling-based spider monkey optimization and energy-efficient cluster head selection (SSMOECHS). This study describes how the sampling method is used in basic SMO and how to select cluster-heads using sampling-based SMO. The experimental results are compared to similar protocols, namely low-energy adaptive clustering hierarchy centralized (LEACH-C), particle swarm optimization clustering protocol (PSO-C), and SMO based threshold-sensitive energy-efficient delay-aware routing protocol (SMOTECP), and the results are shown in both homogeneous and heterogeneous setups. In these setups, SSMOECHS improves network lifetime and stability periods by averages of 13.4%, 7.1%, 34.6%, and 1.8%, respectively.


2016 ◽  
Vol 13 (10) ◽  
pp. 6642-6648
Author(s):  
S. G Susila ◽  
J Arputhavijayaselvi

The continual research and development in wireless sensor networks, power is most vital resource because each sensor node has limited battery power. Numerous clustering concept routing protocols have been developed to balance and enhance lifetime of the sensor nodes in wireless sensor networks. Available clustering routing protocols are select cluster heads periodically and they considered only how can select cluster heads energy-efficiently and the most excellent selection of cluster heads, without considering energy-efficient period of the cluster heads replacement. Herein paper, it is employed different formulae in homogeneous merged layer node deployment system, which has a threshold-based cluster head selection mechanism for clustering routing protocols of wireless sensor networks. The proposed routing protocol is minimizes the number of cluster head selection difficulty by using threshold of residual energy comparison. Reducing the amount of difficulty for cluster head selection procedure yields better life span of the whole sensor networks and it is compared with the available clustering routing protocols. In the proposed system of work, node scheduling or activation techniques are also integrated and the obtained simulation results illustrate that the best to the obtainable clustering protocols in wireless sensor networks (WSNs).


Sign in / Sign up

Export Citation Format

Share Document