scholarly journals A novel method to determine basic probability assignment in Dempster–Shafer theory and its application in multi-sensor information fusion

2019 ◽  
Vol 15 (7) ◽  
pp. 155014771986587 ◽  
Author(s):  
Liguo Fei ◽  
Jun Xia ◽  
Yuqiang Feng ◽  
Luning Liu

Multi-sensor information fusion occurs in a vast variety of applications, including medical diagnosis, automatic drive, speech recognition, and so on. Often these problems can be modeled by Dempster–Shafer theory. In Dempster–Shafer theory, the most primary processing unit is the basic probability assignment, which is a description of objective information in the real world. How to make this description more effective is a vital but open issue. A novel basic probability assignment generation model is proposed in this article whose objective is to provide perspective with respect to how basic probability assignment can be determined based on learning algorithms. First, the basic probability assignment generation model is constructed based on clustering idea using K-means method, which is employed to determine basic probability assignment with the proposed basic probability assignment generation method. Moreover, the proposed basic probability assignment generation method is extended by K–nearest neighbor (K-NN) algorithm. The detailed implementation of the proposed method is demonstrated by several numerical examples. As an extension, a classifier called KKC is constructed according to the developed approach, and its classification effect is compared with several famous classification algorithms. Experiments manifest desirable results with regard to classification accuracy, which illustrates the applicability of the proposed method to determine basic probability assignment.

Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1222
Author(s):  
Fanghui Huang ◽  
Yu Zhang ◽  
Ziqing Wang ◽  
Xinyang Deng

Dempster–Shafer theory (DST), which is widely used in information fusion, can process uncertain information without prior information; however, when the evidence to combine is highly conflicting, it may lead to counter-intuitive results. Moreover, the existing methods are not strong enough to process real-time and online conflicting evidence. In order to solve the above problems, a novel information fusion method is proposed in this paper. The proposed method combines the uncertainty of evidence and reinforcement learning (RL). Specifically, we consider two uncertainty degrees: the uncertainty of the original basic probability assignment (BPA) and the uncertainty of its negation. Then, Deng entropy is used to measure the uncertainty of BPAs. Two uncertainty degrees are considered as the condition of measuring information quality. Then, the adaptive conflict processing is performed by RL and the combination two uncertainty degrees. The next step is to compute Dempster’s combination rule (DCR) to achieve multi-sensor information fusion. Finally, a decision scheme based on correlation coefficient is used to make the decision. The proposed method not only realizes adaptive conflict evidence management, but also improves the accuracy of multi-sensor information fusion and reduces information loss. Numerical examples verify the effectiveness of the proposed method.


Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1122 ◽  
Author(s):  
Yonggang Zhao ◽  
Duofa Ji ◽  
Xiaodong Yang ◽  
Liguo Fei ◽  
Changhai Zhai

It is still an open issue to measure uncertainty of the basic probability assignment function under Dempster-Shafer theory framework, which is the foundation and preliminary work for conflict degree measurement and combination of evidences. This paper proposes an improved belief entropy to measure uncertainty of the basic probability assignment based on Deng entropy and the belief interval, which takes the belief function and the plausibility function as the lower bound and the upper bound, respectively. Specifically, the center and the span of the belief interval are employed to define the total uncertainty degree. It can be proved that the improved belief entropy will be degenerated to Shannon entropy when the the basic probability assignment is Bayesian. The results of numerical examples and a case study show that its efficiency and flexibility are better compared with previous uncertainty measures.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1061
Author(s):  
Yu Zhang ◽  
Fanghui Huang ◽  
Xinyang Deng ◽  
Wen Jiang

The Dempster-Shafer theory (DST) is an information fusion framework and widely used in many fields. However, the uncertainty measure of a basic probability assignment (BPA) is still an open issue in DST. There are many methods to quantify the uncertainty of BPAs. However, the existing methods have some limitations. In this paper, a new total uncertainty measure from a perspective of maximum entropy requirement is proposed. The proposed method can measure both dissonance and non-specificity in BPA, which includes two components. The first component is consistent with Yager’s dissonance measure. The second component is the non-specificity measurement with different functions. We also prove the desirable properties of the proposed method. Besides, numerical examples and applications are provided to illustrate the effectiveness of the proposed total uncertainty measure.


2020 ◽  
Vol 31 (01) ◽  
pp. 2050055 ◽  
Author(s):  
Gexiang Zhang ◽  
Haina Rong ◽  
Prithwineel Paul ◽  
Yangyang He ◽  
Ferrante Neri ◽  
...  

Several variants of spiking neural P systems (SNPS) have been presented in the literature to perform arithmetic operations. However, each of these variants was designed only for one specific arithmetic operation. In this paper, a complete arithmetic calculator implemented by SNPS is proposed. An application of the proposed calculator to information fusion is also proposed. The information fusion is implemented by integrating the following three elements: (1) an addition and subtraction SNPS already reported in the literature; (2) a modified multiplication and division SNPS; (3) a novel storage SNPS, i.e. a method based on SNPS is introduced to calculate basic probability assignment of an event. This is the first attempt to apply arithmetic operation SNPS to fuse multiple information. The effectiveness of the presented general arithmetic SNPS calculator is verified by means of several examples.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Wen Jiang ◽  
Jun Zhan ◽  
Deyun Zhou ◽  
Xin Li

Dempster-Shafer evidence theory (D-S theory) has been widely used in many information fusion systems since it was proposed by Dempster and extended by Shafer. However, how to determine the basic probability assignment (BPA), which is the main and first step in D-S theory, is still an open issue, especially when the given environment is in an open world, which means the frame of discernment is incomplete. In this paper, a method to determine generalized basic probability assignment in an open world is proposed. Frame of discernment in an open world is established first, and then the triangular fuzzy number models to identify target in the proposed frame of discernment are established. Pessimistic strategy based on the differentiation degree between model and sample is defined to yield the BPAs for known targets. If the sum of all the BPAs of known targets is over one, then they will be normalized and the BPA of unknown target is assigned to0; otherwise the BPA of unknown target is equal to1minus the sum of all the known targets BPAs. IRIS classification examples illustrated the effectiveness of the proposed method.


2015 ◽  
Vol 16 (3) ◽  
pp. 583
Author(s):  
Andino Maseleno ◽  
Md. Mahmud Hasan ◽  
Norjaidi Tuah

This research aims to combine the mathematical theory of evidence with the rule based logics to refine the predictable output. Integrating Fuzzy Logic and Dempster-Shafer theory by calculating the similarity between Fuzzy membership function. The novelty aspect of this work is that basic probability assignment is proposed based on the similarity measure between membership function. The similarity between Fuzzy membership function is calculated to get a basic probability assignment. The Dempster-Shafer mathematical theory of evidence has attracted considerable attention as a promising method of dealing with some of the basic problems arising in combination of evidence and data fusion. Dempster-Shafer theory provides the ability to deal with ignorance and missing information. The foundation of Fuzzy logic is natural language which can help to make full use of expert information.


Sign in / Sign up

Export Citation Format

Share Document