scholarly journals Efficiently computing Pareto optimal G-skyline query in wireless sensor network

2021 ◽  
Vol 17 (12) ◽  
pp. 155014772110606
Author(s):  
Leigang Dong ◽  
Guohua Liu ◽  
Xiaowei Cui ◽  
Quan Yu

There are much data transmitted from sensors in wireless sensor network. How to mine vital information from these large amount of data is very important for decision-making. Aiming at mining more interesting information for users, the skyline technology has attracted more attention due to its widespread use for multi-criteria decision-making. The point which is not dominated by any other points can be called skyline point. The skyline consists of all these points which are candidates for users. However, traditional skyline which consists of individual points is not suitable for combinations. To address this gap, we focus on the group skyline query and propose efficient algorithm to computing the Pareto optimal group-based skyline (G-skyline). We propose multiple query windows to compute key skyline layers, then optimize the method to compute directed skyline graph, finally introduce primary points definition and propose a fast algorithm based on it to compute G-skyline groups directly and efficiently. The experiments on the real-world sensor data set and the synthetic data set show that our algorithm performs more efficiently than the existing algorithms.

2018 ◽  
Vol 7 (2.26) ◽  
pp. 25
Author(s):  
E Ramya ◽  
R Gobinath

Data mining plays an important role in analysis of data in modern sensor networks. A sensor network is greatly constrained by the various challenges facing a modern Wireless Sensor Network. This survey paper focuses on basic idea about the algorithms and measurements taken by the Researchers in the area of Wireless Sensor Network with Health Care. This survey also catego-ries various constraints in Wireless Body Area Sensor Networks data and finds the best suitable techniques for analysing the Sensor Data. Due to resource constraints and dynamic topology, the quality of service is facing a challenging issue in Wireless Sensor Networks. In this paper, we review the quality of service parameters with respect to protocols, algorithms and Simulations. 


2016 ◽  
Vol 12 (05) ◽  
pp. 48 ◽  
Author(s):  
Y. H. Zhou ◽  
J. G. Duan

A greenhouse provides a stable and suitable environment for the growth of plants. Temperature and humidity are closely related to plant growth. These factors directly affect the water content of plants and the quality of fruits. To solve the problems in the current monitoring system of greenhouse cultivation, such as complicated wiring, large node power consumption, and so on, this study proposes a wireless sensor network greenhouse-monitoring system based on third-generation network communication for the real-time monitoring of the temperature, humidity, light, and CO<sub>2</sub> concentration in a greenhouse. GS1011M is regarded as the core in developing wireless terminal nodes. PC software is used to build a real-time observation platform. Sensor data are received in real time through a wireless communication network to complete the monitoring of the target area. A simulation research is also conducted. Results show that the power dissipation of the greenhouse environmental monitoring system is low, its data accuracy is high, and its operation is stable.


Author(s):  
Lambodar Jena ◽  
Ramakrushna Swain ◽  
N.K. kamila

This paper proposes a layered modular architecture to adaptively perform data mining tasks in large sensor networks. The architecture consists in a lower layer which performs data aggregation in a modular fashion and in an upper layer which employs an adaptive local learning technique to extract a prediction model from the aggregated information. The rationale of the approach is that a modular aggregation of sensor data can serve jointly two purposes: first, the organization of sensors in clusters, then reducing the communication effort, second, the dimensionality reduction of the data mining task, then improving the accuracy of the sensing task . Here we show that some of the algorithms developed within the artificial neuralnetworks tradition can be easily adopted to wireless sensor-network platforms and will meet several aspects of the constraints for data mining in sensor networks like: limited communication bandwidth, limited computing resources, limited power supply, and the need for fault-tolerance. The analysis of the dimensionality reduction obtained from the outputs of the neural-networks clustering algorithms shows that the communication costs of the proposed approach are significantly smaller, which is an important consideration in sensor-networks due to limited power supply. In this paper we will present two possible implementations of the ART and FuzzyART neuralnetworks algorithms, which are unsupervised learning methods for categorization of the sensory inputs. They are tested on a data obtained from a set of several nodes, equipped with several sensors each.


2012 ◽  
pp. 505-523
Author(s):  
Brian J. d’Auriol ◽  
Sungyoung Lee ◽  
Young-Koo Lee

Wireless sensor networks can provide large amounts of data that, when combined with pre-processing and data analysis processes, can generate large amounts of data that may be difficult to present in visual forms. Often, understanding of the data and how it spatially and temporally changes as well as the patterns suggested by the data are of interest to human viewers. This chapter considers the issues involved in the visual presentations of such data and includes an analysis of data set sizes generated by wireless sensor networks and a survey of existing wireless sensor network visualization systems. A novel model is presented that can include not only the raw data but also derived data indicating certain patterns that the raw data may indicate. The model is informally presented and a simulation-based example illustrates its use and potential.


Sign in / Sign up

Export Citation Format

Share Document